Timezone: »

 
Structured Priors for Disentangling Pathology and Anatomy in Patient Brain MRI
Anjun Hu · Jean-Pierre Falet · Changjian Shui · Brennan Nichyporuk · Sotirios Tsaftaris · Tal Arbel

We propose a structured variational inference model for disentangling observable evidence of disease (e.g. brain lesions or atrophy) from subject-specific anatomy in brain MRIs. With flexible, partially autoregressive priors, our model (1) addresses the subtle and detailed dependencies that typically exist between anatomical and pathological generating factors of an MRI to ensure the validity of generated samples; (2) preserves and disentangles finer pathological details pertaining to one’s disease state. We additionally demonstrate, by providing supervision to a subset of latent units, that (1) a partially supervised latent space achieves a higher degree of disentanglement between evidence of disease and subject-specific anatomy; (2) when the prior is formulated with an autoregressive structure, knowledge from the supervision can propagate to the unsupervised latent units, resulting in more informative latent representations capable of modelling anatomy-pathology interdependencies.

Author Information

Anjun Hu (McGill University)
Jean-Pierre Falet (McGill University)
Changjian Shui (McGill University)
Brennan Nichyporuk (Mila)
Sotirios Tsaftaris (University of Edinburgh)
Tal Arbel (McGill University)

More from the Same Authors

  • 2022 : Metrics Reloaded »
    Annika Reinke · Lena Maier-Hein · Patrick Scholz · Minu D. Tizabi · Evangelia Christodoulou · Ben Glocker · Fabian Isensee · Jens Kleesiek · Michal Kozubek · Mauricio Reyes · Michael A. Riegler · Manuel Wiesenfarth · Michael Baumgartner · Matthias Eisenmann · Doreen Heckmann-Nötzel · A. Kavur · Tim Rädsch · Laura Acion · Michela Antonelli · Tal Arbel · Spyridon Bakas · Pete Bankhead · Arriel Benis · Florian Buettner · M. Jorge Cardoso · Veronika Cheplygina · Beth Cimini · Gary Collins · Keyvan Farahani · Luciana Ferrer · Adrian Galdran · Bram van Ginneken · Robert Haase · Daniel Hashimoto · Michael Hoffman · Merel Huisman · Pierre Jannin · Charles Kahn · Dagmar Kainmueller · Alexandros Karargyris · Bernhard Kainz · Alan Karthikesalingam · Hannes Kenngott · Florian Kofler · Annette Kopp-Schneider · Anna Kreshuk · Tahsin Kurc · Bennett Landman · Geert Litjens · Amin Madani · Klaus H. Maier-Hein · Anne Martel · Peter Mattson · Erik Meijering · Bjoern Menze · David Moher · Karel G.M. Moons · Henning Mueller · Brennan Nichyporuk · Felix Nickel · Jens Petersen · Nasir Rajpoot · Nicola Rieke · Julio Saez-Rodriguez · Clarisa Sanchez · Shravya Shetty · Maarten van Smeden · Carole Sudre · Ronald Summers · Abdel Aziz Taha · Sotirios Tsaftaris · Ben Ben Van Calster · Gaël Varoquaux · Paul Jäger
  • 2023 Poster: On the Stability-Plasticity Dilemma in Continual Meta-Learning: Theory and Algorithm »
    Qi CHEN · Changjian Shui · Ligong Han · Mario Marchand
  • 2022 Spotlight: Lightning Talks 2B-4 »
    Feiyi Xiao · Amrutha Saseendran · Kwangho Kim · Keyu Yan · Changjian Shui · Guangxi Li · Shikun Li · Edward Kennedy · Man Zhou · Gezheng Xu · Ruilin Ye · Xiaobo Xia · Junjie Tang · Kathrin Skubch · Stefan Falkner · Hansong Zhang · Jose Zubizarreta · Huaying Fang · Xuanqiang Zhao · Jie Huang · Qi CHEN · Yibing Zhan · Jiaqi Li · Xin Wang · Ruibin Xi · Feng Zhao · Margret Keuper · Charles Ling · Shiming Ge · Chengjun Xie · Tongliang Liu · Tal Arbel · Chongyi Li · Danfeng Hong · Boyu Wang · Christian Gagné
  • 2022 Spotlight: On Learning Fairness and Accuracy on Multiple Subgroups »
    Changjian Shui · Gezheng Xu · Qi CHEN · Jiaqi Li · Charles Ling · Tal Arbel · Boyu Wang · Christian Gagné
  • 2022 Poster: On Learning Fairness and Accuracy on Multiple Subgroups »
    Changjian Shui · Gezheng Xu · Qi CHEN · Jiaqi Li · Charles Ling · Tal Arbel · Boyu Wang · Christian Gagné
  • 2018 : Is your machine learning method solving a real clinical problem? »
    Tal Arbel