Timezone: »
Studying Bias in GANs through the Lens of Race
Vongani Maluleke · Neerja Thakkar · Tim Brooks · Ethan Weber · Trevor Darrell · Alexei Efros · Angjoo Kanazawa · Devin Guillory
In this work, we study how the performance of generative image models are impacted by the racial composition of their training datasets. By examining and controlling the racial distributions in various training datasets, we are able to observe the impacts of different training distributions on generated image quality and the racial distributions of the generated images. Our results show that the racial compositions of generated images successfully preserve that of the training data. However, we observe that truncation, a technique used to generate higher quality images, exacerbates racial imbalances in the data.
Author Information
Vongani Maluleke (University of California, Berkeley)
Neerja Thakkar (University of California, Berkeley)
Tim Brooks (UC Berkeley)
Ethan Weber (UC Berkeley)
Trevor Darrell (UC Berkeley)
Alexei Efros (UC Berkeley)
Angjoo Kanazawa (UC Berkeley)
Devin Guillory (UC Berkeley)
More from the Same Authors
-
2022 Poster: Test-Time Training with Masked Autoencoders »
Yossi Gandelsman · Yu Sun · Xinlei Chen · Alexei Efros -
2022 Poster: Visual Prompting via Image Inpainting »
Amir Bar · Yossi Gandelsman · Trevor Darrell · Amir Globerson · Alexei Efros -
2022 Poster: Generating Long Videos of Dynamic Scenes »
Tim Brooks · Janne Hellsten · Miika Aittala · Ting-Chun Wang · Timo Aila · Jaakko Lehtinen · Ming-Yu Liu · Alexei Efros · Tero Karras -
2021 Poster: Tracking People with 3D Representations »
Jathushan Rajasegaran · Georgios Pavlakos · Angjoo Kanazawa · Jitendra Malik -
2021 Poster: MarioNette: Self-Supervised Sprite Learning »
Dmitriy Smirnov · MICHAEL GHARBI · Matthew Fisher · Vitor Guizilini · Alexei Efros · Justin Solomon -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Alexei Efros »
Alexei Efros -
2020 : Invited Talk: Alexei Efros »
Alexei Efros -
2020 Poster: Auxiliary Task Reweighting for Minimum-data Learning »
Baifeng Shi · Judy Hoffman · Kate Saenko · Trevor Darrell · Huijuan Xu -
2020 Poster: Space-Time Correspondence as a Contrastive Random Walk »
Allan Jabri · Andrew Owens · Alexei Efros -
2020 Oral: Space-Time Correspondence as a Contrastive Random Walk »
Allan Jabri · Andrew Owens · Alexei Efros -
2020 Poster: An Analysis of SVD for Deep Rotation Estimation »
Jake Levinson · Carlos Esteves · Kefan Chen · Noah Snavely · Angjoo Kanazawa · Afshin Rostamizadeh · Ameesh Makadia -
2020 Poster: Swapping Autoencoder for Deep Image Manipulation »
Taesung Park · Jun-Yan Zhu · Oliver Wang · Jingwan Lu · Eli Shechtman · Alexei Efros · Richard Zhang -
2020 Poster: Fighting Copycat Agents in Behavioral Cloning from Observation Histories »
Chuan Wen · Jierui Lin · Trevor Darrell · Dinesh Jayaraman · Yang Gao -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Oral Presentations »
Janith Petangoda · Sergio Pascual-Diaz · Jordi Grau-Moya · Raphaël Marinier · Olivier Pietquin · Alexei Efros · Phillip Isola · Trevor Darrell · Christopher Lu · Deepak Pathak · Johan Ferret -
2019 Workshop: AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Trevor Darrell · Eric Heim · Zhangyang Wang · Bryce Goodman · Piotr Biliński -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Poster: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2019 Spotlight: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2018 Poster: Speaker-Follower Models for Vision-and-Language Navigation »
Daniel Fried · Ronghang Hu · Volkan Cirik · Anna Rohrbach · Jacob Andreas · Louis-Philippe Morency · Taylor Berg-Kirkpatrick · Kate Saenko · Dan Klein · Trevor Darrell -
2017 : Invited Talk 7 »
Trevor Darrell -
2017 : Adaptive Deep Learning for Perception, Action, and Explanation, Trevor Darrell (UC Berkeley) »
Trevor Darrell -
2017 : How to stop worrying and learn to love Nearest Neighbors »
Alexei Efros -
2017 Poster: Toward Multimodal Image-to-Image Translation »
Jun-Yan Zhu · Richard Zhang · Deepak Pathak · Trevor Darrell · Alexei Efros · Oliver Wang · Eli Shechtman -
2016 : What makes ImageNet good for Transfer Learning? »
Jacob MY Huh · Pulkit Agrawal · Alexei Efros -
2016 : Invited Talk: Learning Adaptive Driving Models from Large-scale Video Datasets (Fisher Yu, Huazhe Xu, Dequan Wang, and Trevor Darrell, Berkeley) »
Trevor Darrell -
2016 Workshop: Machine Learning for Intelligent Transportation Systems »
Li Erran Li · Trevor Darrell -
2015 : Intro and Adapting Deep Networks Across Domains, Modalities, and Tasks »
Trevor Darrell -
2014 Poster: Do Convnets Learn Correspondence? »
Jonathan L Long · Ning Zhang · Trevor Darrell -
2014 Poster: LSDA: Large Scale Detection through Adaptation »
Judy Hoffman · Sergio Guadarrama · Eric Tzeng · Ronghang Hu · Jeff Donahue · Ross Girshick · Trevor Darrell · Kate Saenko -
2014 Poster: Weakly-supervised Discovery of Visual Pattern Configurations »
Hyun Oh Song · Yong Jae Lee · Stefanie Jegelka · Trevor Darrell -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2012 Poster: Learning with Recursive Perceptual Representations »
Oriol Vinyals · Yangqing Jia · Li Deng · Trevor Darrell -
2012 Poster: Timely Object Recognition »
Sergey K Karayev · Tobi Baumgartner · Mario Fritz · Trevor Darrell -
2011 Workshop: Integrating Language and Vision »
Raymond Mooney · Trevor Darrell · Kate Saenko -
2011 Poster: Heavy-tailed Distances for Gradient Based Image Descriptors »
Yangqing Jia · Trevor Darrell -
2010 Poster: Factorized Latent Spaces with Structured Sparsity »
Yangqing Jia · Mathieu Salzmann · Trevor Darrell -
2010 Poster: Size Matters: Metric Visual Search Constraints from Monocular Metadata »
Mario J Fritz · Kate Saenko · Trevor Darrell -
2009 Poster: Learning to Hash with Binary Reconstructive Embeddings »
Brian Kulis · Trevor Darrell -
2009 Spotlight: Learning to Hash with Binary Reconstructive Embeddings »
Brian Kulis · Trevor Darrell -
2009 Poster: An Additive Latent Feature Model for Transparent Object Recognition »
Mario J Fritz · Michael J Black · Gary R Bradski · Trevor Darrell -
2009 Poster: Filtering Abstract Senses From Image Search Results »
Kate Saenko · Trevor Darrell -
2009 Oral: An Additive Latent Feature Model for Transparent Object Recognition »
Mario J Fritz · Michael J Black · Gary R Bradski · Trevor Darrell -
2008 Poster: Unsupervised Learning of Visual Sense Models for Polysemous Words »
Kate Saenko · Trevor Darrell -
2008 Spotlight: Unsupervised Learning of Visual Sense Models for Polysemous Words »
Kate Saenko · Trevor Darrell -
2006 Poster: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell -
2006 Spotlight: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell