Timezone: »

 
Transfer NAS with Meta-learned Bayesian Surrogates
Gresa Shala · Thomas Elsken · Frank Hutter · Josif Grabocka
Event URL: https://openreview.net/forum?id=fqKBtyLqikY »

While neural architecture search (NAS) is an intensely-researched area, approaches typically still suffer from either (i) high computational costs or (ii) lack of robustness across datasets and experiments. Furthermore, most methods start searching for an optimal architecture from scratch, ignoring prior knowledge. This is in contrast to the manual design process by researchers and engineers that leverage previous deep learning experiences by, e.g., transferring architectures from previously solved, related problems.We propose to adopt this human design strategy and introduce a novel surrogate for NAS, that is meta-learned across prior architecture evaluations across different datasets. We utilize Bayesian Optimization (BO) with deep-kernel Gaussian Processes, graph neural networks for the architecture embeddings and a transformer-based set encoder of datasets. As a result, our method consistently achieves state-of-the-art results on six computer vision datasets, while being as fast as one-shot NAS methods.

Author Information

Gresa Shala (Universität Freiburg)
Thomas Elsken (Bosch)
Frank Hutter (University of Freiburg & Bosch)

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he previously was an assistant professor 2013-2017. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

Josif Grabocka (Universität Freiburg)

More from the Same Authors