Timezone: »
Recently, it has been observed that a transfer learning solution might be all we need to solve many few-shot learning benchmarks -- thus raising important questions about when and how meta-learning algorithms should be deployed. In this paper, we seek to clarify these questions by 1. proposing a novel metric -- the {\it diversity coefficient} -- to measure the diversity of tasks in a few-shot learning benchmark and 2. by comparing Model-Agnostic Meta-Learning (MAML) and transfer learning under fair conditions (same architecture, same optimizer, and all models trained to convergence).Using the diversity coefficient, we show that the popular MiniImageNet and CIFAR-FS few-shot learning benchmarks have low diversity. This novel insight contextualizes claims that transfer learning solutions are better than meta-learned solutions in the regime of low diversity under a fair comparison. Specifically, we empirically find that a low diversity coefficient correlates with a high similarity between transfer learning and MAML learned solutions in terms of accuracy at meta-test time and classification layer similarity (using feature based distance metrics like SVCCA, PWCCA, CKA, and OPD). To further support our claim, we find this meta-test accuracy holds even as the model size changes. Therefore, we conclude that in the low diversity regime, MAML and transfer learning have equivalent meta-test performance when both are compared fairly.We also hope our work inspires more thoughtful constructions and quantitative evaluations of meta-learning benchmarks in the future.
Author Information
Brando Miranda (Stanford University)
Patrick Yu (Department of Computer Science, University of Illinois at Urbana-Champaign)
Yu-Xiong Wang (School of Computer Science, Carnegie Mellon University)
Sanmi Koyejo (Stanford, Google Research)

Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign and a research scientist at Google AI in Accra. Koyejo's research interests are in developing the principles and practice of adaptive and robust machine learning. Additionally, Koyejo focuses on applications to biomedical imaging and neuroscience. Koyejo co-founded the Black in AI organization and currently serves on its board.
More from the Same Authors
-
2021 : Probabilistic Performance Metric Elicitation »
Zachary Robertson · Hantao Zhang · Sanmi Koyejo -
2021 : Robust and Personalized Federated Learning with Spurious Features: an Adversarial Approach »
Xiaoyang Wang · Han Zhao · Klara Nahrstedt · Sanmi Koyejo -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : Secure Byzantine-Robust Distributed Learning via Clustering »
Raj Kiriti Velicheti · Sanmi Koyejo -
2021 : Exploiting Causal Chains for Domain Generalization »
Olawale Salaudeen · Sanmi Koyejo -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2022 : Metric Elicitation; Moving from Theory to Practice »
Safinah Ali · Sohini Upadhyay · Gaurush Hiranandani · Elena Glassman · Sanmi Koyejo -
2022 : Batch Active Learning from the Perspective of Sparse Approximation »
Maohao Shen · Yibo Jacky Zhang · Bowen Jiang · Sanmi Koyejo -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning with Demonstrations »
Kai Yan · Alex Schwing · Yu-Xiong Wang -
2022 Poster: Continual Learning with Evolving Class Ontologies »
Zhiqiu Lin · Deepak Pathak · Yu-Xiong Wang · Deva Ramanan · Shu Kong -
2022 Poster: A Reduction to Binary Approach for Debiasing Multiclass Datasets »
Ibrahim Alabdulmohsin · Jessica Schrouff · Sanmi Koyejo -
2022 Poster: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo