Timezone: »

 
Towards Discovering Neural Architectures from Scratch
Simon Schrodi · Danny Stoll · Robin Ru · Rhea Sukthanker · Thomas Brox · Frank Hutter
Event URL: https://openreview.net/forum?id=Ok58hMNXIQ »

The discovery of neural architectures from scratch is the long-standing goal of Neural Architecture Search (NAS). Searching over a wide spectrum of neural architectures can facilitate the discovery of previously unconsidered but well-performing architectures. In this work, we take a large step towards discovering neural architectures from scratch by expressing architectures algebraically. This algebraic view leads to a more general method for designing search spaces, which allows us to compactly represent search spaces that are 100s of orders of magnitude larger than common spaces from the literature. Further, we propose a Bayesian Optimization strategy to efficiently search over such huge spaces, and demonstrate empirically that both our search space design and our search strategy can be superior to existing baselines. We open source our algebraic NAS approach and provide APIs for PyTorch and TensorFlow.

Author Information

Simon Schrodi (University of Freiburg)
Danny Stoll (University of Freiburg)
Danny Stoll

First doctoral candidate at the engineering faculty of the University of Freiburg admitted directly after the B.Sc. Working on AutoML, Deep Learning, Neural Architecture Search, Hyperparameter Optimization, Joint Architecture and Hyperparameter Search, Meta-Learning

Robin Ru (Oxford University)
Rhea Sukthanker (University of Freiburg, Albert-Ludwigs-Universität Freiburg)
Thomas Brox (University of Freiburg)
Frank Hutter (University of Freiburg & Bosch)

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he previously was an assistant professor 2013-2017. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

More from the Same Authors