Timezone: »
Exploration has always been a crucial aspect of reinforcement learning. When facing long horizon sparse reward environments modern methods still struggle with effective exploration and generalize poorly. In the multi-goal reinforcement learning setting, out-of-distribution goals might appear similar to the achieved ones, but the agent can never accurately assess its ability to achieve them without attempting them. To enable faster exploration and improve generalization, we propose an exploration method that lets the agent temporarily pursue the most meaningful nearby goal. We demonstrate the performance of our method through experiments in four multi-goal continuous navigation environments including a 2D PointMaze, an AntMaze, and a discrete multi-goal foraging world.
Author Information
Haoyang Xu (University of Toronto)
Jimmy Ba (University of Toronto / Vector Institute)
Silviu Pitis (University of Toronto)
Harris Chan (University of Toronto, Vector Institute)
More from the Same Authors
-
2021 : BLAST: Latent Dynamics Models from Bootstrapping »
Keiran Paster · Lev McKinney · Sheila McIlraith · Jimmy Ba -
2022 : Large Language Models Are Human-Level Prompt Engineers »
Yongchao Zhou · Andrei Muresanu · Ziwen Han · Silviu Pitis · Harris Chan · Keiran Paster · Jimmy Ba -
2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba -
2022 : Skill Acquisition by Instruction Augmentation on Offline Datasets »
Ted Xiao · Harris Chan · Pierre Sermanet · Ayzaan Wahid · Anthony Brohan · Karol Hausman · Sergey Levine · Jonathan Tompson -
2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba -
2022 : Guiding Exploration Towards Impactful Actions »
Vaibhav Saxena · Jimmy Ba · Danijar Hafner -
2022 : Steering Large Language Models using APE »
Yongchao Zhou · Andrei Muresanu · Ziwen Han · Keiran Paster · Silviu Pitis · Harris Chan · Jimmy Ba -
2022 : Rational Multi-Objective Agents Must Admit Non-Markov Reward Representations »
Silviu Pitis · Duncan Bailey · Jimmy Ba -
2022 : Invited Talk by Jimmy Ba »
Jimmy Ba -
2022 Poster: MoCoDA: Model-based Counterfactual Data Augmentation »
Silviu Pitis · Elliot Creager · Ajay Mandlekar · Animesh Garg -
2022 Poster: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang -
2022 Poster: You Can’t Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments »
Keiran Paster · Sheila McIlraith · Jimmy Ba -
2022 Poster: Dataset Distillation using Neural Feature Regression »
Yongchao Zhou · Ehsan Nezhadarya · Jimmy Ba -
2021 Poster: Clockwork Variational Autoencoders »
Vaibhav Saxena · Jimmy Ba · Danijar Hafner -
2021 Poster: Learning Domain Invariant Representations in Goal-conditioned Block MDPs »
Beining Han · Chongyi Zheng · Harris Chan · Keiran Paster · Michael Zhang · Jimmy Ba -
2021 Poster: How does a Neural Network's Architecture Impact its Robustness to Noisy Labels? »
Jingling Li · Mozhi Zhang · Keyulu Xu · John Dickerson · Jimmy Ba -
2020 : Contributed Talk #2: Evaluating Agents Without Rewards »
Brendon Matusch · Danijar Hafner · Jimmy Ba -
2020 : Contributed Talk: Planning from Pixels using Inverse Dynamics Models »
Keiran Paster · Sheila McIlraith · Jimmy Ba -
2020 Session: Orals & Spotlights Track 34: Deep Learning »
Tuo Zhao · Jimmy Ba -
2020 Poster: Counterfactual Data Augmentation using Locally Factored Dynamics »
Silviu Pitis · Elliot Creager · Animesh Garg -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Lookahead Optimizer: k steps forward, 1 step back »
Michael Zhang · James Lucas · Jimmy Ba · Geoffrey E Hinton -
2019 Poster: Graph Normalizing Flows »
Jenny Liu · Aviral Kumar · Jimmy Ba · Jamie Kiros · Kevin Swersky -
2018 Poster: Reversible Recurrent Neural Networks »
Matthew MacKay · Paul Vicol · Jimmy Ba · Roger Grosse