Timezone: »
Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning (RL) agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment-Space Response Oracles (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environment parameters and co-player policies and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player environments, spanning discrete and continuous control.
Author Information
Mikayel Samvelyan (UCL & Meta AI)
Akbir Khan (University College London)
Michael Dennis (UC Berkeley)
Michael Dennis is a 5th year grad student at the Center for Human-Compatible AI. With a background in theoretical computer science, he is working to close the gap between decision theoretic and game theoretic recommendations and the current state of the art approaches to robust RL and multi-agent RL. The overall aim of this work is to ensure that our systems behave in a way that is robustly beneficial. In the single agent setting, this means making decisions and managing risk in the way the designer intends. In the multi-agent setting, this means ensuring that the concerns of the designer and those of others in the society are fairly and justly negotiated to the benefit of all involved.
Minqi Jiang (UCL & FAIR)
Jack Parker-Holder (DeepMind)
Jakob Foerster (University of Oxford)
Jakob Foerster received a CIFAR AI chair in 2019 and is starting as an Assistant Professor at the University of Toronto and the Vector Institute in the academic year 20/21. During his PhD at the University of Oxford, he helped bring deep multi-agent reinforcement learning to the forefront of AI research and interned at Google Brain, OpenAI, and DeepMind. He has since been working as a research scientist at Facebook AI Research in California, where he will continue advancing the field up to his move to Toronto. He was the lead organizer of the first Emergent Communication (EmeCom) workshop at NeurIPS in 2017, which he has helped organize ever since.
Roberta Raileanu (FAIR)
Tim Rocktäschel (University College London, Facebook AI Research)
Tim is a Researcher at Facebook AI Research (FAIR) London, an Associate Professor at the Centre for Artificial Intelligence in the Department of Computer Science at University College London (UCL), and a Scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to that, he was a Postdoctoral Researcher in Reinforcement Learning at the University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervision of Sebastian Riedel, and he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a Google Ph.D. Fellowship in 2017. His work focuses on reinforcement learning in open-ended environments that require intrinsically motivated agents capable of transferring commonsense, world and domain knowledge in order to systematically generalize to novel situations.
More from the Same Authors
-
2021 : MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research »
Mikayel Samvelyan · Robert Kirk · Vitaly Kurin · Jack Parker-Holder · Minqi Jiang · Eric Hambro · Fabio Petroni · Heinrich Kuttler · Edward Grefenstette · Tim Rocktäschel -
2021 : Grounding Aleatoric Uncertainty in Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Kuttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2021 : No DICE: An Investigation of the Bias-Variance Tradeoff in Meta-Gradients »
Risto Vuorio · Jacob Beck · Greg Farquhar · Jakob Foerster · Shimon Whiteson -
2021 : That Escalated Quickly: Compounding Complexity by Editing Levels at the Frontier of Agent Capabilities »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2021 : Return Dispersion as an Estimator of Learning Potential for Prioritized Level Replay »
Iryna Korshunova · Minqi Jiang · Jack Parker-Holder · Tim Rocktäschel · Edward Grefenstette -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 : A Fine-Tuning Approach to Belief State Modeling »
Samuel Sokota · Hengyuan Hu · David Wu · Jakob Foerster · Noam Brown -
2021 : Generalized Belief Learning in Multi-Agent Settings »
Darius Muglich · Luisa Zintgraf · Christian Schroeder de Witt · Shimon Whiteson · Jakob Foerster -
2021 : On-the-fly Strategy Adaptation for ad-hoc Agent Coordination »
Jaleh Zand · Jack Parker-Holder · Stephen J Roberts -
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : Adversarial Cheap Talk »
Chris Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 : Integrating Episodic and Global Bonuses for Efficient Exploration »
Mikael Henaff · Minqi Jiang · Roberta Raileanu -
2022 : Human-AI Coordination via Human-Regularized Search and Learning »
Hengyuan Hu · David Wu · Adam Lerer · Jakob Foerster · Noam Brown -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2022 : Building a Subspace of Policies for Scalable Continual Learning »
Jean-Baptiste Gaya · Thang Long Doan · Lucas Page-Caccia · Laure Soulier · Ludovic Denoyer · Roberta Raileanu -
2022 : Adversarial Cheap Talk »
Chris Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 : Uncertainty-Driven Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2022 : The Surprising Effectiveness of Latent World Models for Continual Reinforcement Learning »
Samuel Kessler · Piotr Miłoś · Jack Parker-Holder · S Roberts -
2023 Poster: On the Importance of Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2023 Poster: Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design »
Matthew T Jackson · Minqi Jiang · Jack Parker-Holder · Risto Vuorio · Chris Lu · Greg Farquhar · Shimon Whiteson · Jakob Foerster -
2023 Poster: Improving Language Plasticity via Pretraining with Active Forgetting »
Yihong Chen · Mikel Artetxe · Kelly Marchisio · Roberta Raileanu · David Adelani · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2023 Poster: Similarity-based cooperative equilibrium »
Caspar Oesterheld · Johannes Treutlein · Roger Grosse · Vincent Conitzer · Jakob Foerster -
2023 Poster: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Poster: Synthetic Experience Replay »
Cong Lu · Philip Ball · Yee Whye Teh · Jack Parker-Holder -
2023 Poster: The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs »
Laura Ruis · Akbir Khan · Stella Biderman · Sara Hooker · Tim Rocktäschel · Edward Grefenstette -
2023 Poster: Structured State Space Models for In-Context Reinforcement Learning »
Chris Lu · Yannick Schroecker · Albert Gu · Emilio Parisotto · Jakob Foerster · Satinder Singh · Feryal Behbahani -
2023 Poster: SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning »
Benjamin Ellis · Jonathan Cook · Skander Moalla · Mikayel Samvelyan · Mingfei Sun · Anuj Mahajan · Jakob Foerster · Shimon Whiteson -
2023 Oral: Toolformer: Language Models Can Teach Themselves to Use Tools »
Timo Schick · Jane Dwivedi-Yu · Roberto Dessi · Roberta Raileanu · Maria Lomeli · Eric Hambro · Luke Zettlemoyer · Nicola Cancedda · Thomas Scialom -
2023 Competition: Melting Pot Contest »
Rakshit Trivedi · Akbir Khan · Jesse Clifton · Lewis Hammond · John Agapiou · Edgar Dueñez-Guzman · Jayd Matyas · Dylan Hadfield-Menell · Joel Leibo -
2023 Workshop: Socially Responsible Language Modelling Research (SoLaR) »
Usman Anwar · David Krueger · Samuel Bowman · Jakob Foerster · Su Lin Blodgett · Roberta Raileanu · Alan Chan · Katherine Lee · Laura Ruis · Robert Kirk · Yawen Duan · Xin Chen · Kawin Ethayarajh -
2023 Workshop: Agent Learning in Open-Endedness Workshop »
Minqi Jiang · Mikayel Samvelyan · Jack Parker-Holder · Mayalen Etcheverry · Yingchen Xu · Michael Dennis · Roberta Raileanu -
2022 : Jakob Foerster »
Jakob Foerster -
2022 Workshop: Foundation Models for Decision Making »
Mengjiao (Sherry) Yang · Yilun Du · Jack Parker-Holder · Siddharth Karamcheti · Igor Mordatch · Shixiang (Shane) Gu · Ofir Nachum -
2022 Poster: Dungeons and Data: A Large-Scale NetHack Dataset »
Eric Hambro · Roberta Raileanu · Danielle Rothermel · Vegard Mella · Tim Rocktäschel · Heinrich Küttler · Naila Murray -
2022 Poster: Proximal Learning With Opponent-Learning Awareness »
Stephen Zhao · Chris Lu · Roger Grosse · Jakob Foerster -
2022 Poster: Learning General World Models in a Handful of Reward-Free Deployments »
Yingchen Xu · Jack Parker-Holder · Aldo Pacchiano · Philip Ball · Oleh Rybkin · S Roberts · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world »
Eugene Vinitsky · Nathan Lichtlé · Xiaomeng Yang · Brandon Amos · Jakob Foerster -
2022 Poster: Grounding Aleatoric Uncertainty for Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Küttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2022 Poster: Off-Team Learning »
Brandon Cui · Hengyuan Hu · Andrei Lupu · Samuel Sokota · Jakob Foerster -
2022 Poster: Self-Explaining Deviations for Coordination »
Hengyuan Hu · Samuel Sokota · David Wu · Anton Bakhtin · Andrei Lupu · Brandon Cui · Jakob Foerster -
2022 Poster: Improving Policy Learning via Language Dynamics Distillation »
Victor Zhong · Jesse Mu · Luke Zettlemoyer · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: Exploration via Elliptical Episodic Bonuses »
Mikael Henaff · Roberta Raileanu · Minqi Jiang · Tim Rocktäschel -
2022 Poster: GriddlyJS: A Web IDE for Reinforcement Learning »
Christopher Bamford · Minqi Jiang · Mikayel Samvelyan · Tim Rocktäschel -
2022 Poster: Discovered Policy Optimisation »
Chris Lu · Jakub Kuba · Alistair Letcher · Luke Metz · Christian Schroeder de Witt · Jakob Foerster -
2022 Poster: Influencing Long-Term Behavior in Multiagent Reinforcement Learning »
Dong-Ki Kim · Matthew Riemer · Miao Liu · Jakob Foerster · Michael Everett · Chuangchuang Sun · Gerald Tesauro · Jonathan How -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: Equivariant Networks for Zero-Shot Coordination »
Darius Muglich · Christian Schroeder de Witt · Elise van der Pol · Shimon Whiteson · Jakob Foerster -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 Workshop: Cooperative AI »
Natasha Jaques · Edward Hughes · Jakob Foerster · Noam Brown · Kalesha Bullard · Charlotte Smith -
2021 : The NetHack Challenge + Q&A »
Eric Hambro · Sharada Mohanty · Dipam Chakrabroty · Edward Grefenstette · Minqi Jiang · Robert Kirk · Vitaly Kurin · Heinrich Kuttler · Vegard Mella · Nantas Nardelli · Jack Parker-Holder · Roberta Raileanu · Tim Rocktäschel · Danielle Rothermel · Mikayel Samvelyan -
2021 Poster: Replay-Guided Adversarial Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2021 Poster: Tactical Optimism and Pessimism for Deep Reinforcement Learning »
Ted Moskovitz · Jack Parker-Holder · Aldo Pacchiano · Michael Arbel · Michael Jordan -
2021 Poster: Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL »
Jack Parker-Holder · Vu Nguyen · Shaan Desai · Stephen J Roberts -
2021 Poster: K-level Reasoning for Zero-Shot Coordination in Hanabi »
Brandon Cui · Hengyuan Hu · Luis Pineda · Jakob Foerster -
2021 Poster: Neural Pseudo-Label Optimism for the Bank Loan Problem »
Aldo Pacchiano · Shaun Singh · Edward Chou · Alex Berg · Jakob Foerster -
2020 Workshop: Talking to Strangers: Zero-Shot Emergent Communication »
Marie Ossenkopf · Angelos Filos · Abhinav Gupta · Michael Noukhovitch · Angeliki Lazaridou · Jakob Foerster · Kalesha Bullard · Rahma Chaabouni · Eugene Kharitonov · Roberto Dessì -
2020 Poster: Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian »
Jack Parker-Holder · Luke Metz · Cinjon Resnick · Hengyuan Hu · Adam Lerer · Alistair Letcher · Alexander Peysakhovich · Aldo Pacchiano · Jakob Foerster -
2020 Poster: Effective Diversity in Population Based Reinforcement Learning »
Jack Parker-Holder · Aldo Pacchiano · Krzysztof M Choromanski · Stephen J Roberts -
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2020 Spotlight: Effective Diversity in Population Based Reinforcement Learning »
Jack Parker-Holder · Aldo Pacchiano · Krzysztof M Choromanski · Stephen J Roberts -
2020 Poster: Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits »
Jack Parker-Holder · Vu Nguyen · Stephen J Roberts -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Poster: MAVEN: Multi-Agent Variational Exploration »
Anuj Mahajan · Tabish Rashid · Mikayel Samvelyan · Shimon Whiteson -
2019 Poster: Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning »
Gregory Farquhar · Shimon Whiteson · Jakob Foerster -
2019 Poster: Multi-Agent Common Knowledge Reinforcement Learning »
Christian Schroeder de Witt · Jakob Foerster · Gregory Farquhar · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2019 Poster: From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization »
Krzysztof M Choromanski · Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Vikas Sindhwani -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 : Poster Sessions and Lunch (Provided) »
Akira Utsumi · Alane Suhr · Ji Zhang · Ramon Sanabria · Kushal Kafle · Nicholas Chen · Seung Wook Kim · Aishwarya Agrawal · SRI HARSHA DUMPALA · Shikhar Murty · Pablo Azagra · Jean ROUAT · Alaaeldin Ali · · SUBBAREDDY OOTA · Angela Lin · Shruti Palaskar · Farley Lai · Amir Aly · Tingke Shen · Dianqi Li · Jianguo Zhang · Rita Kuznetsova · Jinwon An · Jean-Benoit Delbrouck · Tomasz Kornuta · Syed Ashar Javed · Christopher Davis · John Co-Reyes · Vasu Sharma · Sungwon Lyu · Ning Xie · Ankita Kalra · Huan Ling · Oleksandr Maksymets · Bhavana Mahendra Jain · Shun-Po Chuang · Sanyam Agarwal · Jerome Abdelnour · Yufei Feng · vincent albouy · Siddharth Karamcheti · Derek Doran · Roberta Raileanu · Jonathan Heek -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom -
2017 : Contributed Talks 2 »
Roberta Raileanu · Satwik Kottur · Paul Grouchy -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Workshop: 6th Workshop on Automated Knowledge Base Construction (AKBC) »
Jay Pujara · Dor Arad · Bhavana Dalvi Mishra · Tim Rocktäschel -
2017 Poster: End-to-End Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Oral: End-to-end Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2016 Poster: Learning to Communicate with Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Yannis Assael · Nando de Freitas · Shimon Whiteson