Timezone: »
We present Bootstrap your own Latents with Diffusion models for Exploration (BLaDE), a general approach for curiosity-driven exploration in complex, partially-observable and stochastic environments. BLaDE is a natural extension of Bootstrap Your Own Latents for Exploration (BYOL-Explore) which is a multi-step prediction-error method at the latent level that learns a world representation, the world dynamics, and provides an intrinsic-reward all-together by optimizing a single prediction loss with no additional auxiliary objective. Contrary to BYOL-Explore that predicts future latents from past latents and future open-loop actions, BLaDE predicts, via a diffusion model, future latents from past observations, future open-loop actions and a noisy version of future latents. Leaking information about future latents allows to obtain an intrinsic reward that does not depend on the variance of the distribution of future latents which makes the method agnostic to stochastic traps. Our experiments on different noisy versions of Montezuma's Revenge show that BLaDE handles stochasticity better than Random Network Distillation, Intrinsic Curiosity Module and BYOL-Explore without degrading the performance of BYOL-Explore in the non-noisy and fairly deterministic
Author Information
Bilal Piot (DeepMind)
Zhaohan Guo (DeepMind)
Shantanu Thakoor (Google)
Mohammad Gheshlaghi Azar (DeepMind)
More from the Same Authors
-
2022 Poster: BYOL-Explore: Exploration by Bootstrapped Prediction »
Zhaohan Guo · Shantanu Thakoor · Miruna Pislar · Bernardo Avila Pires · Florent Altché · Corentin Tallec · Alaa Saade · Daniele Calandriello · Jean-Bastien Grill · Yunhao Tang · Michal Valko · Remi Munos · Mohammad Gheshlaghi Azar · Bilal Piot -
2021 Oral: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2017 Poster: Is the Bellman residual a bad proxy? »
Matthieu Geist · Bilal Piot · Olivier Pietquin