Timezone: »
Real-world data for classification is often labeled by multiple annotators. For analyzing such data, we introduce CROWDLAB, a straightforward approach to estimate: (1) A consensus label for each example that aggregates the individual annotations (more accurately than aggregation via majority-vote or other algorithms used in crowdsourcing); (2) A confidence score for how likely each consensus label is correct (via well-calibrated estimates that account for the: number of annotations for each example and their agreement, prediction-confidence from a trained classifier, and trustworthiness of each annotator vs. the classifier); (3) A rating for each annotator quantifying the overall correctness of their labels. While many algorithms have been proposed to estimate related quantities in crowdsourcing, these often rely on sophisticated generative models with iterative inference schemes, whereas CROWDLAB is based on simple weighted ensembling. Many algorithms also rely solely on annotator statistics, ignoring the features of the examples from which the annotations derive. CROWDLAB in contrast utilizes any classifier model trained on these features, which can generalize between examples with similar features. In evaluations on real-world multi-annotator image data, our proposed method provides superior estimates for (1)-(3) than many alternative algorithms.
Author Information
Hui Wen Goh (Cleanlab)
Ulyana Tkachenko (Cleanlab)
Jonas Mueller (Cleanlab)
More from the Same Authors
-
2021 : Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks »
Curtis Northcutt · Anish Athalye · Jonas Mueller -
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2021 : Robust Reinforcement Learning for Shifting Dynamics During Deployment »
Samuel Stanton · Rasool Fakoor · Jonas Mueller · Andrew Gordon Wilson · Alexander Smola -
2022 Poster: Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alexander Smola -
2021 Poster: Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alexander Smola -
2021 Poster: Deep Extended Hazard Models for Survival Analysis »
Qixian Zhong · Jonas Mueller · Jane-Ling Wang -
2021 Poster: Overinterpretation reveals image classification model pathologies »
Brandon Carter · Siddhartha Jain · Jonas Mueller · David Gifford -
2021 : Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks »
Curtis Northcutt · Anish Athalye · Jonas Mueller -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola -
2016 : Contributed Talk 1: Learning Optimal Interventions »
Jonas Mueller -
2015 Poster: Principal Differences Analysis: Interpretable Characterization of Differences between Distributions »
Jonas Mueller · Tommi Jaakkola