Timezone: »
Are Neurons Actually Collapsed? On the Fine-Grained Structure in Neural Representations
Yongyi Yang · Jacob Steinhardt · Wei Hu
Event URL: https://openreview.net/forum?id=nntzzF9KolL »
Recent work has observed an intriguing "Neural Collapse" phenomenon in well-trained neural networks, where the last-layer representations of training samples with the same label collapse into each other. This suggests that the last-layer representations are completely determined by the labels, and do not depend on the intrinsic structure of input distribution. We provide evidence that this is not a complete description, and that the apparent collapse hides important fine-grained structure in the representations. Specifically, even when representations apparently collapse, the small amount of remaining variation can still faithfully and accurately captures the intrinsic structure of input distribution. As an example, if we train on CIFAR-10 using only 5 coarse-grained labels (by combining two classes into one super-class) until convergence, we can reconstruct the original 10-class labels from the learned representations via unsupervised clustering. The reconstructed labels achieve $93\%$ accuracy on the CIFAR-10 test set, nearly matching the normal CIFAR-10 accuracy for the same architecture. Our findings show concretely how the structure of input data can play a significant role in determining the fine-grained structure of neural representations, going beyond what Neural Collapse predicts.
Recent work has observed an intriguing "Neural Collapse" phenomenon in well-trained neural networks, where the last-layer representations of training samples with the same label collapse into each other. This suggests that the last-layer representations are completely determined by the labels, and do not depend on the intrinsic structure of input distribution. We provide evidence that this is not a complete description, and that the apparent collapse hides important fine-grained structure in the representations. Specifically, even when representations apparently collapse, the small amount of remaining variation can still faithfully and accurately captures the intrinsic structure of input distribution. As an example, if we train on CIFAR-10 using only 5 coarse-grained labels (by combining two classes into one super-class) until convergence, we can reconstruct the original 10-class labels from the learned representations via unsupervised clustering. The reconstructed labels achieve $93\%$ accuracy on the CIFAR-10 test set, nearly matching the normal CIFAR-10 accuracy for the same architecture. Our findings show concretely how the structure of input data can play a significant role in determining the fine-grained structure of neural representations, going beyond what Neural Collapse predicts.
Author Information
Yongyi Yang (University of Michigan)
Jacob Steinhardt (UC Berkeley)
Wei Hu (University of Michigan)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : Measuring Coding Challenge Competence With APPS »
Dan Hendrycks · Steven Basart · Saurav Kadavath · Mantas Mazeika · Akul Arora · Ethan Guo · Collin Burns · Samir Puranik · Horace He · Dawn Song · Jacob Steinhardt -
2021 : PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures »
Dan Hendrycks · Andy Zou · Mantas Mazeika · Leonard Tang · Dawn Song · Jacob Steinhardt -
2021 : Effect of Model Size on Worst-group Generalization »
Alan Pham · Eunice Chan · Vikranth Srivatsa · Dhruba Ghosh · Yaoqing Yang · Yaodong Yu · Ruiqi Zhong · Joseph Gonzalez · Jacob Steinhardt -
2021 : The Effects of Reward Misspecification: Mapping and Mitigating Misaligned Models »
Alexander Pan · Kush Bhatia · Jacob Steinhardt -
2021 : What Would Jiminy Cricket Do? Towards Agents That Behave Morally »
Dan Hendrycks · Mantas Mazeika · Andy Zou · Sahil Patel · Christine Zhu · Jesus Navarro · Dawn Song · Bo Li · Jacob Steinhardt -
2021 : Measuring Mathematical Problem Solving With the MATH Dataset »
Dan Hendrycks · Collin Burns · Saurav Kadavath · Akul Arora · Steven Basart · Eric Tang · Dawn Song · Jacob Steinhardt -
2022 : Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small »
Kevin Wang · Alexandre Variengien · Arthur Conmy · Buck Shlegeris · Jacob Steinhardt -
2023 Poster: Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature Connectivity »
Zhanpeng Zhou · Yongyi Yang · Xiaojiang Yang · Junchi Yan · Wei Hu -
2023 Poster: Jailbroken: How Does LLM Safety Training Fail? »
Alexander Wei · Nika Haghtalab · Jacob Steinhardt -
2023 Poster: Supply-Side Equilibria in Recommender Systems »
Meena Jagadeesan · Nikhil Garg · Jacob Steinhardt -
2023 Poster: Mass-Producing Failures of Multimodal Models »
Shengbang Tong · Erik Jones · Jacob Steinhardt -
2023 Poster: Goal Driven Discovery of Distributional Differences via Language Descriptions »
Ruiqi Zhong · Peter Zhang · Steve Li · Jinwoo Ahn · Dan Klein · Jacob Steinhardt -
2023 Poster: Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition »
Meena Jagadeesan · Michael Jordan · Jacob Steinhardt · Nika Haghtalab -
2023 Oral: Jailbroken: How Does LLM Safety Training Fail? »
Alexander Wei · Nika Haghtalab · Jacob Steinhardt -
2022 Workshop: Workshop on Machine Learning Safety »
Dan Hendrycks · Victoria Krakovna · Dawn Song · Jacob Steinhardt · Nicholas Carlini -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2022 Poster: How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios »
Mantas Mazeika · Eric Tang · Andy Zou · Steven Basart · Jun Shern Chan · Dawn Song · David Forsyth · Jacob Steinhardt · Dan Hendrycks -
2022 Poster: Capturing Failures of Large Language Models via Human Cognitive Biases »
Erik Jones · Jacob Steinhardt -
2022 Poster: Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks »
Hongjoon Ahn · Yongyi Yang · Quan Gan · Taesup Moon · David P Wipf -
2022 Poster: Forecasting Future World Events With Neural Networks »
Andy Zou · Tristan Xiao · Ryan Jia · Joe Kwon · Mantas Mazeika · Richard Li · Dawn Song · Jacob Steinhardt · Owain Evans · Dan Hendrycks -
2021 Poster: Grounding Representation Similarity Through Statistical Testing »
Frances Ding · Jean-Stanislas Denain · Jacob Steinhardt -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2018 Workshop: Workshop on Security in Machine Learning »
Nicolas Papernot · Jacob Steinhardt · Matt Fredrikson · Kamalika Chaudhuri · Florian Tramer -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2017 Workshop: Aligned Artificial Intelligence »
Dylan Hadfield-Menell · Jacob Steinhardt · David Duvenaud · David Krueger · Anca Dragan -
2017 Workshop: Machine Learning and Computer Security »
Jacob Steinhardt · Nicolas Papernot · Bo Li · Chang Liu · Percy Liang · Dawn Song -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2016 : Opening Remarks »
Jacob Steinhardt -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Combinatorial Multi-Armed Bandit with General Reward Functions »
Wei Chen · Wei Hu · Fu Li · Jian Li · Yu Liu · Pinyan Lu -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang