Timezone: »
The over parameterization of neural networks has been widely concerned for a long time. This gives us the opportunity to find a sub-networks that can improve the parameter efficiency of neural networks from a over parameterized network. In our study, we used EDSR as the backbone network to explore the parameter efficiency in super-resolution(SR) networks in the form of sparsity. Specifically, we search for sparse sub-networks at the two granularity of weight and kernel through various methods, and analyze the relationship between the structure and performance of the sub-networks. (1) We observe the ``Lottery Ticket Hypothesis'' from a new perspective in the regression task of SR on weight granularity. (2) On convolution kernel granularity, we apply several methods to explore the influence of different sparse sub-networks on network performance and found that based on certain rules, the performance of different sub-networks rarely depends on their structures. (3) We propose a very convenient width-sparsity method on convolution kernel granularity, which can improve the parameter utilization efficiency of most SR networks.
Author Information
Chenyu Dong (Electronic Engineering, Tsinghua University, Tsinghua University)
Hailong Ma (Tsinghua University, Tsinghua University)
Jinjin Gu (University of Sydney)
Ruofan Zhang
Jieming Li
Chun Yuan (Tsinghua University)
More from the Same Authors
-
2022 Poster: Rethinking Alignment in Video Super-Resolution Transformers »
Shuwei Shi · Jinjin Gu · Liangbin Xie · Xintao Wang · Yujiu Yang · Chao Dong -
2022 Poster: Cross Aggregation Transformer for Image Restoration »
Zheng Chen · Yulun Zhang · Jinjin Gu · yongbing zhang · Linghe Kong · Xin Yuan -
2022 Spotlight: One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations »
Yiming Zhu · Hongyu Liu · Yibing Song · Ziyang Yuan · Xintong Han · Chun Yuan · Qifeng Chen · Jue Wang -
2022 Spotlight: Cross Aggregation Transformer for Image Restoration »
Zheng Chen · Yulun Zhang · Jinjin Gu · yongbing zhang · Linghe Kong · Xin Yuan -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations »
Yiming Zhu · Hongyu Liu · Yibing Song · Ziyang Yuan · Xintong Han · Chun Yuan · Qifeng Chen · Jue Wang -
2021 Poster: Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective »
Zhengzhuo Xu · Zenghao Chai · Chun Yuan -
2017 : Competition II: Learning to Run »
Łukasz Kidziński · Carmichael Ong · Sharada Mohanty · Jason Fries · Jennifer Hicks · Zhuobin Zheng · Chun Yuan · Sergey Plis