Timezone: »
Data augmentation is a critical contributing factor to the success of deep learning but heavily relies on prior domain knowledge which is not always available. Recent works on automatic data augmentation learn a policy to form a sequence of augmentation operations, which are still pre-defined and restricted to limited options. In this paper, we show that a prior-free autonomous data augmentation's objective can be derived from a representation learning principle that aims to preserve the minimum sufficient information of the labels. Given an example, the objective aims at creating a distant ``hard positive example'' as the augmentation, while still preserving the original label. We then propose a practical surrogate to the objective that can be optimized efficiently and integrated seamlessly into existing methods for a broad class of machine learning tasks, e.g., supervised, semi-supervised, and noisy-label learning. Unlike previous works, our method does not require training an extra generative model but instead leverages the intermediate layer representations of the end-task model for generating data augmentations. In experiments, we show that our method consistently brings non-trivial improvements to the three aforementioned learning tasks from both efficiency and final performance, either or not combined with pre-defined augmentations, e.g., on medical images when domain knowledge is unavailable and the existing augmentation techniques perform poorly. Code will be released publicly.
Author Information
Kaiwen Yang (University of Science and Technology of China)
Yanchao Sun (University of Maryland, College Park)
Jiahao Su (University of Maryland)
Fengxiang He (JD.com Inc)
Fengxiang He received his BSc in statistics from University of Science and Technology of China, MPhil and PhD in computer science from the University of Sydney. He is currently an algorithm scientist at JD Explore Academy, JD.com Inc., leading its trustworthy AI team. His research interest is in the theory and practice of trustworthy AI, including deep learning theory, privacy-preserving ML, decentralized learning, and their applications. He has published in prominent journals and conferences, including TNNLS, TMM, TCSVT, ICML, NeurIPS, ICLR, CVPR, and ICCV. He is the area chair of AISTATS, BMVC, and ACML. He is the leading author of several standards on trustworthy AI.
Xinmei Tian (University of Science and Technology of China)
Furong Huang (University of Maryland)
Tianyi Zhou (University of Maryland, College Park)

Tianyi Zhou (https://tianyizhou.github.io) is a tenure-track assistant professor of computer science at the University of Maryland, College Park. He received his Ph.D. from the school of computer science & engineering at the University of Washington, Seattle. His research interests are in machine learning, optimization, and natural language processing (NLP). His recent works study curriculum learning that can combine high-level human learning strategies with model training dynamics to create a hybrid intelligence. The applications include semi/self-supervised learning, robust learning, reinforcement learning, meta-learning, ensemble learning, etc. He published >80 papers and is a recipient of the Best Student Paper Award at ICDM 2013 and the 2020 IEEE Computer Society TCSC Most Influential Paper Award.
Dacheng Tao (University of Technology, Sydney)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach »
Tue. Nov 29th 05:00 -- 07:00 PM Room Hall J #101
More from the Same Authors
-
2021 Spotlight: Constrained Robust Submodular Partitioning »
Shengjie Wang · Tianyi Zhou · Chandrashekhar Lavania · Jeff A Bilmes -
2021 : AP-10K: A Benchmark for Animal Pose Estimation in the Wild »
Hang Yu · Yufei Xu · Jing Zhang · Wei Zhao · Ziyu Guan · Dacheng Tao -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2021 : Efficiently Improving the Robustness of RL Agents against Strongest Adversaries »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2021 : Transfer RL across Observation Feature Spaces via Model-Based Regularization »
Yanchao Sun · Ruijie Zheng · Xiyao Wang · Andrew Cohen · Furong Huang -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2022 Poster: Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach »
Peng Mi · Li Shen · Tianhe Ren · Yiyi Zhou · Xiaoshuai Sun · Rongrong Ji · Dacheng Tao -
2022 Poster: When to Update Your Model: Constrained Model-based Reinforcement Learning »
Tianying Ji · Yu Luo · Fuchun Sun · Mingxuan Jing · Fengxiang He · Wenbing Huang -
2022 Poster: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation »
Yufei Xu · Jing Zhang · Qiming ZHANG · Dacheng Tao -
2022 Poster: Towards Lightweight Black-Box Attack Against Deep Neural Networks »
Chenghao Sun · Yonggang Zhang · Wan Chaoqun · Qizhou Wang · Ya Li · Tongliang Liu · Bo Han · Xinmei Tian -
2022 Poster: APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking »
Yuxiang Yang · Junjie Yang · Yufei Xu · Jing Zhang · Long Lan · Dacheng Tao -
2022 : SMART: Self-supervised Multi-task pretrAining with contRol Transformers »
Yanchao Sun · shuang ma · Ratnesh Madaan · Rogerio Bonatti · Furong Huang · Ashish Kapoor -
2022 : Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning »
Souradip Chakraborty · Amrit Bedi · Alec Koppel · Furong Huang · Pratap Tokekar · Dinesh Manocha -
2022 : GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint »
Paiheng Xu · Yuhang Zhou · Bang An · Wei Ai · Furong Huang -
2022 : Controllable Attack and Improved Adversarial Training in Multi-Agent Reinforcement Learning »
Xiangyu Liu · Souradip Chakraborty · Furong Huang -
2022 : Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity »
Mucong Ding · Tahseen Rabbani · Bang An · Evan Wang · Furong Huang -
2022 : Faster Hyperparameter Search on Graphs via Calibrated Dataset Condensation »
Mucong Ding · Xiaoyu Liu · Tahseen Rabbani · Furong Huang -
2022 : DP-InstaHide: Data Augmentations Provably Enhance Guarantees Against Dataset Manipulations »
Eitan Borgnia · Jonas Geiping · Valeriia Cherepanova · Liam Fowl · Arjun Gupta · Amin Ghiasi · Furong Huang · Micah Goldblum · Tom Goldstein -
2022 : Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function »
Ruijie Zheng · Xiyao Wang · Huazhe Xu · Furong Huang -
2022 : Contributed Talk: Controllable Attack and Improved Adversarial Training in Multi-Agent Reinforcement Learning »
Xiangyu Liu · Souradip Chakraborty · Furong Huang -
2022 Spotlight: Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits »
Kaining Zhang · Liu Liu · Min-Hsiu Hsieh · Dacheng Tao -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking »
Yuxiang Yang · Junjie Yang · Yufei Xu · Jing Zhang · Long Lan · Dacheng Tao -
2022 Spotlight: Federated Learning from Pre-Trained Models: A Contrastive Learning Approach »
Yue Tan · Guodong Long · Jie Ma · LU LIU · Tianyi Zhou · Jing Jiang -
2022 Spotlight: When to Update Your Model: Constrained Model-based Reinforcement Learning »
Tianying Ji · Yu Luo · Fuchun Sun · Mingxuan Jing · Fengxiang He · Wenbing Huang -
2022 Spotlight: Lightning Talks 3A-1 »
Shu Ding · Wanxing Chang · Jiyang Guan · Mouxiang Chen · Guan Gui · Yue Tan · Shiyun Lin · Guodong Long · Yuze Han · Wei Wang · Zhen Zhao · Ye Shi · Jian Liang · Chenghao Liu · Lei Qi · Ran He · Jie Ma · Zemin Liu · Xiang Li · Hoang Tuan · Luping Zhou · Zhihua Zhang · Jianling Sun · Jingya Wang · LU LIU · Tianyi Zhou · Lei Wang · Jing Jiang · Yinghuan Shi -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 : SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication »
Marco Bornstein · Tahseen Rabbani · Evan Wang · Amrit Bedi · Furong Huang -
2022 Poster: Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability »
Roman Levin · Manli Shu · Eitan Borgnia · Furong Huang · Micah Goldblum · Tom Goldstein -
2022 Poster: Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity »
Mucong Ding · Tahseen Rabbani · Bang An · Evan Wang · Furong Huang -
2022 Poster: Distributional Reward Estimation for Effective Multi-agent Deep Reinforcement Learning »
Jifeng Hu · Yanchao Sun · Hechang Chen · Sili Huang · haiyin piao · Yi Chang · Lichao Sun -
2022 Poster: Inducing Neural Collapse in Imbalanced Learning: Do We Really Need a Learnable Classifier at the End of Deep Neural Network? »
Yibo Yang · Shixiang Chen · Xiangtai Li · Liang Xie · Zhouchen Lin · Dacheng Tao -
2022 Poster: CGLB: Benchmark Tasks for Continual Graph Learning »
Xikun Zhang · Dongjin Song · Dacheng Tao -
2022 Poster: Efficient Adversarial Training without Attacking: Worst-Case-Aware Robust Reinforcement Learning »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2022 Poster: Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits »
Kaining Zhang · Liu Liu · Min-Hsiu Hsieh · Dacheng Tao -
2022 Poster: Benefits of Permutation-Equivariance in Auction Mechanisms »
Tian Qin · Fengxiang He · Dingfeng Shi · Wenbing Huang · Dacheng Tao -
2022 Poster: Federated Learning from Pre-Trained Models: A Contrastive Learning Approach »
Yue Tan · Guodong Long · Jie Ma · LU LIU · Tianyi Zhou · Jing Jiang -
2022 Poster: End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation without Overthinking »
Arpit Bansal · Avi Schwarzschild · Eitan Borgnia · Zeyad Emam · Furong Huang · Micah Goldblum · Tom Goldstein -
2022 Poster: Transferring Fairness under Distribution Shifts via Fair Consistency Regularization »
Bang An · Zora Che · Mucong Ding · Furong Huang -
2022 Poster: Retrospective Adversarial Replay for Continual Learning »
Lilly Kumari · Shengjie Wang · Tianyi Zhou · Jeff A Bilmes -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2021 : Efficiently Improving the Robustness of RL Agents against Strongest Adversaries »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2021 Poster: Constrained Robust Submodular Partitioning »
Shengjie Wang · Tianyi Zhou · Chandrashekhar Lavania · Jeff A Bilmes -
2021 Poster: Class-Disentanglement and Applications in Adversarial Detection and Defense »
Kaiwen Yang · Tianyi Zhou · Yonggang Zhang · Xinmei Tian · Dacheng Tao -
2021 Poster: CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum »
Shuang Ao · Tianyi Zhou · Guodong Long · Qinghua Lu · Liming Zhu · Jing Jiang -
2021 Poster: Gauge Equivariant Transformer »
Lingshen He · Yiming Dong · Yisen Wang · Dacheng Tao · Zhouchen Lin -
2021 Poster: ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias »
Yufei Xu · Qiming ZHANG · Jing Zhang · Dacheng Tao -
2020 Poster: Curriculum Learning by Dynamic Instance Hardness »
Tianyi Zhou · Shengjie Wang · Jeffrey A Bilmes -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2020 Poster: ARMA Nets: Expanding Receptive Field for Dense Prediction »
Jiahao Su · Shiqi Wang · Furong Huang -
2019 Poster: Curriculum-guided Hindsight Experience Replay »
Meng Fang · Tianyi Zhou · Yali Du · Lei Han · Zhengyou Zhang -
2019 Poster: Learning to Propagate for Graph Meta-Learning »
LU LIU · Tianyi Zhou · Guodong Long · Jing Jiang · Chengqi Zhang -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2018 Poster: Diverse Ensemble Evolution: Curriculum Data-Model Marriage »
Tianyi Zhou · Shengjie Wang · Jeffrey A Bilmes -
2018 Poster: Learning Versatile Filters for Efficient Convolutional Neural Networks »
Yunhe Wang · Chang Xu · Chunjing XU · Chao Xu · Dacheng Tao -
2014 Poster: Divide-and-Conquer Learning by Anchoring a Conical Hull »
Tianyi Zhou · Jeffrey A Bilmes · Carlos Guestrin