Timezone: »

Continuous Deep Q-Learning in Optimal Control Problems: Normalized Advantage Functions Analysis
Anton Plaksin · Stepan Martyanov

Tue Dec 06 09:00 AM -- 11:00 AM (PST) @

One of the most effective continuous deep reinforcement learning algorithms is normalized advantage functions (NAF). The main idea of NAF consists in the approximation of the Q-function by functions quadratic with respect to the action variable. This idea allows to apply the algorithm to continuous reinforcement learning problems, but on the other hand, it brings up the question of classes of problems in which this approximation is acceptable. The presented paper describes one such class. We consider reinforcement learning problems obtained by the discretization of certain optimal control problems. Based on the idea of NAF, we present a new family of quadratic functions and prove its suitable approximation properties. Taking these properties into account, we provide several ways to improve NAF. The experimental results confirm the efficiency of our improvements.

Author Information

Anton Plaksin (N.N. Krasovskii Institute of Mathematics and Mechanics)
Stepan Martyanov (Ural Federal University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 Spotlight: Lightning Talks 1B-4 »
    Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin