Timezone: »
Spotlight
Benefits of Additive Noise in Composing Classes with Bounded Capacity
Alireza Fathollah Pour · Hassan Ashtiani
We observe that given two (compatible) classes of functions $\mathcal{F}$ and $\mathcal{H}$ with small capacity as measured by their uniform covering numbers, the capacity of the composition class $\mathcal{H} \circ \mathcal{F}$ can become prohibitively large or even unbounded. We then show that adding a small amount of Gaussian noise to the output of $\mathcal{F}$ before composing it with $\mathcal{H}$ can effectively control the capacity of $\mathcal{H} \circ \mathcal{F}$, offering a general recipe for modular design. To prove our results, we define new notions of uniform covering number of random functions with respect to the total variation and Wasserstein distances. We instantiate our results for the case of multi-layer sigmoid neural networks. Preliminary empirical results on MNIST dataset indicate that the amount of noise required to improve over existing uniform bounds can be numerically negligible (i.e., element-wise i.i.d. Gaussian noise with standard deviation $10^{-240}$)
Author Information
Alireza Fathollah Pour (McMaster University)
Hassan Ashtiani (McMaster University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Benefits of Additive Noise in Composing Classes with Bounded Capacity »
Dates n/a. Room
More from the Same Authors
-
2022 Spotlight: Lightning Talks 2A-1 »
Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao -
2021 Poster: Privately Learning Mixtures of Axis-Aligned Gaussians »
Ishaq Aden-Ali · Hassan Ashtiani · Christopher Liaw -
2019 Poster: Disentangled behavioural representations »
Amir Dezfouli · Hassan Ashtiani · Omar Ghattas · Richard Nock · Peter Dayan · Cheng Soon Ong -
2018 Poster: Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes »
Hassan Ashtiani · Shai Ben-David · Nicholas Harvey · Christopher Liaw · Abbas Mehrabian · Yaniv Plan -
2018 Oral: Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes »
Hassan Ashtiani · Shai Ben-David · Nicholas Harvey · Christopher Liaw · Abbas Mehrabian · Yaniv Plan