Timezone: »

 
Spotlight
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao

Tue Dec 06 05:00 PM -- 07:00 PM (PST) @
Modern deep neural networks (DNNs) are extremely powerful; however, this comes at the price of increased depth and having more parameters per layer, making their training and inference more computationally challenging. In an attempt to address this key limitation, efforts have been devoted to the compression (e.g., sparsification and/or quantization) of these large-scale machine learning models, so that they can be deployed on low-power IoT devices.In this paper, building upon recent research advances in the neural tangent kernel (NTK) and random matrix theory, we provide a novel compression approach to wide and fully-connected \emph{deep} neural nets. Specifically, we demonstrate that in the high-dimensional regime where the number of data points $n$ and their dimension $p$ are both large, and under a Gaussian mixture model for the data, there exists \emph{asymptotic spectral equivalence} between the NTK matrices for a large family of DNN models. This theoretical result enables ''lossless'' compression of a given DNN to be performed, in the sense that the compressed network yields asymptotically the same NTK as the original (dense and unquantized) network, with its weights and activations taking values \emph{only} in $\{ 0, \pm 1 \}$ up to scaling. Experiments on both synthetic and real-world data are conducted to support the advantages of the proposed compression scheme, with code available at https://github.com/Model-Compression/Lossless_Compression.

Author Information

lingyu gu (Huazhong University of Science and Technology)
Yongqi Du (Huazhong University of Science and Technology)
yuan zhang (hikvision)
Di Xie (Hikvision Research Institute)
Shiliang Pu (Zhejiang University)
Robert Qiu (Huazhong University of Science and Technology)
Zhenyu Liao (Huazhong University of Science and Technology)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 Poster: SAViT: Structure-Aware Vision Transformer Pruning via Collaborative Optimization »
    Chuanyang Zheng · zheyang li · Kai Zhang · Zhi Yang · Wenming Tan · Jun Xiao · Ye Ren · Shiliang Pu
  • 2022 Spotlight: Lightning Talks 6B-3 »
    Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu
  • 2022 Spotlight: SAViT: Structure-Aware Vision Transformer Pruning via Collaborative Optimization »
    Chuanyang Zheng · zheyang li · Kai Zhang · Zhi Yang · Wenming Tan · Jun Xiao · Ye Ren · Shiliang Pu
  • 2022 Spotlight: Lightning Talks 2A-1 »
    Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao
  • 2021 Poster: STEP: Out-of-Distribution Detection in the Presence of Limited In-Distribution Labeled Data »
    Zhi Zhou · Lan-Zhe Guo · Zhanzhan Cheng · Yu-Feng Li · Shiliang Pu