Timezone: »
Spotlight
A gradient estimator via L1-randomization for online zero-order optimization with two point feedback
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov
This work studies online zero-order optimization of convex and Lipschitz functions. We present a novel gradient estimator based on two function evaluations and randomization on the $\ell_1$-sphere. Considering different geometries of feasible sets and Lipschitz assumptions we analyse online dual averaging algorithm with our estimator in place of the usual gradient. We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise. We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem. In the case of canceling noise that was previously studied in the literature, our guarantees are either comparable or better than state-of-the-art bounds obtained by~\citet{duchi2015} and \citet{Shamir17} for non-adaptive algorithms. Our analysis is based on deriving a new weighted Poincaré type inequality for the uniform measure on the $\ell_1$-sphere with explicit constants, which may be of independent interest.
Author Information
Arya Akhavan (ENSAE - IIT)
Evgenii Chzhen (CNRS/Université Paris-Saclay)
Massimiliano Pontil (IIT & UCL)
Alexandre Tsybakov (CREST, ENSAE, Institut Polytechnique de Paris)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Wed. Nov 30th 05:00 -- 07:00 PM Room Hall J #728
More from the Same Authors
-
2021 Spotlight: A Unified Approach to Fair Online Learning via Blackwell Approachability »
Evgenii Chzhen · Christophe Giraud · Gilles Stoltz -
2021 : Linear Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport »
Vladimir Kostic · Saverio Salzo · Massimiliano Pontil -
2022 Poster: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2023 Poster: Small Total-Cost Constraints in Contextual Bandits with Knapsacks, with Application to Fairness »
Evgenii Chzhen · Christophe Giraud · Zhen LI · Gilles Stoltz -
2023 Poster: Sharp Spectral Rates for Koopman Operator Learning »
Vladimir Kostic · Karim Lounici · Pietro Novelli · Massimiliano Pontil -
2023 Poster: Estimating Koopman operators with sketching to provably learn large scale dynamical systems »
Giacomo Meanti · Antoine Chatalic · Vladimir Kostic · Pietro Novelli · Massimiliano Pontil · Lorenzo Rosasco -
2023 Poster: Transfer learning for atomistic simulations using GNNs and kernel mean embeddings »
John Falk · Luigi Bonati · Pietro Novelli · Michele Parrinello · Massimiliano Pontil -
2022 Spotlight: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Poster: Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces »
Vladimir Kostic · Pietro Novelli · Andreas Maurer · Carlo Ciliberto · Lorenzo Rosasco · Massimiliano Pontil -
2022 Poster: Group Meritocratic Fairness in Linear Contextual Bandits »
Riccardo Grazzi · Arya Akhavan · John IF Falk · Leonardo Cella · Massimiliano Pontil -
2021 Poster: Concentration inequalities under sub-Gaussian and sub-exponential conditions »
Andreas Maurer · Massimiliano Pontil -
2021 Poster: A Gang of Adversarial Bandits »
Mark Herbster · Stephen Pasteris · Fabio Vitale · Massimiliano Pontil -
2021 Poster: A Unified Approach to Fair Online Learning via Blackwell Approachability »
Evgenii Chzhen · Christophe Giraud · Gilles Stoltz -
2021 Poster: The Role of Global Labels in Few-Shot Classification and How to Infer Them »
Ruohan Wang · Massimiliano Pontil · Carlo Ciliberto -
2021 Poster: Distributed Zero-Order Optimization under Adversarial Noise »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 : Spotlight Talk 1: Quantifying risk-fairness trade-off in regression »
Nicolas Schreuder · Evgenii Chzhen -
2020 Poster: Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2020 Poster: Fair regression with Wasserstein barycenters »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Oral: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2018 Poster: Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance »
Giulia Luise · Alessandro Rudi · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil