Timezone: »
Convolutional neural networks use regular quadrilateral convolution kernels to extract features. Since the number of parameters increases quadratically with the size of the convolution kernel, many popular models use small convolution kernels, resulting in small local receptive fields in lower layers. This paper proposes a novel log-polar space convolution (LPSC) layer, where the convolution kernel is elliptical and adaptively divides its local receptive field into different regions according to the relative directions and logarithmic distances. The local receptive field grows exponentially with the number of distance levels. Therefore, the proposed LPSC not only naturally encodes local spatial structures, but also greatly increases the single-layer receptive field while maintaining the number of parameters. We show that LPSC can be implemented with conventional convolution via log-polar space pooling and can be applied in any network architecture to replace conventional convolutions. Experiments on different tasks and datasets demonstrate the effectiveness of the proposed LPSC.
Author Information
Bing Su (Renmin University of China)
Ji-Rong Wen (Renmin University of China)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Log-Polar Space Convolution Layers »
Dates n/a. Room
More from the Same Authors
-
2022 Poster: Debiased, Longitudinal and Coordinated Drug Recommendation through Multi-Visit Clinic Records »
Hongda Sun · Shufang Xie · Shuqi Li · Yuhan Chen · Ji-Rong Wen · Rui Yan -
2022 Poster: MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning »
Jiangmeng Li · Wenwen Qiang · Yanan Zhang · Wenyi Mo · Changwen Zheng · Bing Su · Hui Xiong -
2022 Spotlight: SemMAE: Semantic-Guided Masking for Learning Masked Autoencoders »
Gang Li · Heliang Zheng · Daqing Liu · Chaoyue Wang · Bing Su · Changwen Zheng -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Lightning Talks 2B-2 »
Chenjian Gao · Rui Ding · Lingzhi LI · Fan Yang · Xingting Yao · Jianxin Li · Bing Su · Zhen Shen · Tongda Xu · Shuai Zhang · Ji-Rong Wen · Lin Guo · Fanrong Li · Kehua Guo · Zhongshu Wang · Zhi Chen · Xiangyuan Zhu · Zitao Mo · Dailan He · Hui Xiong · Yan Wang · Zheng Wu · Wenbing Tao · Jian Cheng · Haoyi Zhou · Li Shen · Ping Tan · Liwei Wang · Hongwei Qin -
2022 Spotlight: MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning »
Jiangmeng Li · Wenwen Qiang · Yanan Zhang · Wenyi Mo · Changwen Zheng · Bing Su · Hui Xiong -
2022 Poster: SemMAE: Semantic-Guided Masking for Learning Masked Autoencoders »
Gang Li · Heliang Zheng · Daqing Liu · Chaoyue Wang · Bing Su · Changwen Zheng -
2022 Poster: Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited »
Mingguo He · Zhewei Wei · Ji-Rong Wen -
2021 Poster: Compressed Video Contrastive Learning »
Yuqi Huo · Mingyu Ding · Haoyu Lu · Nanyi Fei · Zhiwu Lu · Ji-Rong Wen · Ping Luo -
2020 Poster: Scalable Graph Neural Networks via Bidirectional Propagation »
Ming Chen · Zhewei Wei · Bolin Ding · Yaliang Li · Ye Yuan · Xiaoyong Du · Ji-Rong Wen -
2018 Poster: Domain-Invariant Projection Learning for Zero-Shot Recognition »
An Zhao · Mingyu Ding · Jiechao Guan · Zhiwu Lu · Tao Xiang · Ji-Rong Wen