Timezone: »
Multi-fidelity (gray-box) hyperparameter optimization techniques (HPO) have recently emerged as a promising direction for tuning Deep Learning methods. However, existing methods suffer from a sub-optimal allocation of the HPO budget to the hyperparameter configurations. In this work, we introduce DyHPO, a Bayesian Optimization method that learns to decide which hyperparameter configuration to train further in a dynamic race among all feasible configurations. We propose a new deep kernel for Gaussian Processes that embeds the learning curve dynamics, and an acquisition function that incorporates multi-budget information. We demonstrate the significant superiority of DyHPO against state-of-the-art hyperparameter optimization methods through large-scale experiments comprising 50 datasets (Tabular, Image, NLP) and diverse architectures (MLP, CNN/NAS, RNN).
Author Information
Martin Wistuba (Amazon)
Arlind Kadra (University of Freiburg)
Josif Grabocka (Universität Freiburg)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Supervising the Multi-Fidelity Race of Hyperparameter Configurations »
Thu. Dec 1st through Fri the 2nd Room Hall J #224
More from the Same Authors
-
2021 : HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML »
Sebastian Pineda Arango · Hadi Jomaa · Martin Wistuba · Josif Grabocka -
2021 : Transformers Can Do Bayesian-Inference By Meta-Learning on Prior-Data »
Samuel Müller · Noah Hollmann · Sebastian Pineda Arango · Josif Grabocka · Frank Hutter -
2021 : Transfer Learning for Bayesian HPO with End-to-End Landmark Meta-Features »
Hadi Jomaa · Sebastian Pineda Arango · Lars Schmidt-Thieme · Josif Grabocka -
2022 : Transfer NAS with Meta-learned Bayesian Surrogates »
Gresa Shala · Thomas Elsken · Frank Hutter · Josif Grabocka -
2022 : Gray-Box Gaussian Processes for Automated Reinforcement Learning »
Gresa Shala · André Biedenkapp · Frank Hutter · Josif Grabocka -
2022 : AutoRL-Bench 1.0 »
Gresa Shala · Sebastian Pineda Arango · André Biedenkapp · Frank Hutter · Josif Grabocka -
2022 : Bayesian Optimization with a Neural Network Meta-learned on Synthetic Data Only »
Samuel Müller · Sebastian Pineda Arango · Matthias Feurer · Josif Grabocka · Frank Hutter -
2023 Poster: Power Laws for Hyperparameter Optimization »
Arlind Kadra · Maciej Janowski · Martin Wistuba · Josif Grabocka -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Poster: Memory Efficient Continual Learning with Transformers »
Beyza Ermis · Giovanni Zappella · Martin Wistuba · Aditya Rawal · Cedric Archambeau -
2021 Poster: Well-tuned Simple Nets Excel on Tabular Datasets »
Arlind Kadra · Marius Lindauer · Frank Hutter · Josif Grabocka