Timezone: »

 
Spotlight
A Unified Model for Multi-class Anomaly Detection
Zhiyuan You · Lei Cui · Yujun Shen · Kai Yang · Xin Lu · Yu Zheng · Xinyi Le

Wed Dec 07 09:00 AM -- 11:00 AM (PST) @

Despite the rapid advance of unsupervised anomaly detection, existing methods require to train separate models for different objects. In this work, we present UniAD that accomplishes anomaly detection for multiple classes with a unified framework. Under such a challenging setting, popular reconstruction networks may fall into an "identical shortcut", where both normal and anomalous samples can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we make three improvements. First, we revisit the formulations of fully-connected layer, convolutional layer, as well as attention layer, and confirm the important role of query embedding (i.e., within attention layer) in preventing the network from learning the shortcut. We therefore come up with a layer-wise query decoder to help model the multi-class distribution. Second, we employ a neighbor masked attention module to further avoid the information leak from the input feature to the reconstructed output feature. Third, we propose a feature jittering strategy that urges the model to recover the correct message even with noisy inputs. We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass the state-of-the-art alternatives by a sufficiently large margin. For example, when learning a unified model for 15 categories in MVTec-AD, we surpass the second competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and anomaly localization (from 89.5% to 96.8%). Code is available at https://github.com/zhiyuanyou/UniAD.

Author Information

Zhiyuan You (Shanghai Jiao Tong University)
Lei Cui (Tsinghua University, Tsinghua University)
Yujun Shen (Ant Research)
Kai Yang (Beijing University of Posts and Telecommunications)
Xin Lu (SenseTime Group Limited)
Yu Zheng (Shanghai Jiaotong University)
Xinyi Le (Shanghai Jiao Tong University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 Poster: Learning from Future: A Novel Self-Training Framework for Semantic Segmentation »
    Ye Du · Yujun Shen · Haochen Wang · Jingjing Fei · Wei Li · Liwei Wu · Rui Zhao · Zehua Fu · Qingjie LIU
  • 2022 Spotlight: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
    Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung
  • 2022 Spotlight: Lightning Talks 5B-1 »
    Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung
  • 2022 Spotlight: Lightning Talks 3B-3 »
    Sitao Luan · Zhiyuan You · Ruofan Liu · Linhao Qu · Yuwei Fu · Jiaxi Wang · Chunyu Wei · Jian Liang · xiaoyuan luo · Di Wu · Yun Lin · Lei Cui · Ji Wu · Chenqing Hua · Yujun Shen · Qincheng Lu · XIANGLIN YANG · Benoit Boulet · Manning Wang · Di Liu · Lei Huang · Fei Wang · Kai Yang · Jiaqi Zhu · Jin Song Dong · Zhijian Song · Xin Lu · Mingde Zhao · Shuyuan Zhang · Yu Zheng · Xiao-Wen Chang · Xinyi Le · Doina Precup
  • 2022 Poster: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
    Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung
  • 2022 Poster: Improving GANs with A Dynamic Discriminator »
    Ceyuan Yang · Yujun Shen · Yinghao Xu · Deli Zhao · Bo Dai · Bolei Zhou