Timezone: »
Spotlight
Training Spiking Neural Networks with Event-driven Backpropagation
Yaoyu Zhu · Zhaofei Yu · Wei Fang · Xiaodong Xie · Tiejun Huang · Timothée Masquelier
Spiking Neural networks (SNNs) represent and transmit information by spatiotemporal spike patterns, which bring two major advantages: biological plausibility and suitability for ultralow-power neuromorphic implementation. Despite this, the binary firing characteristic makes training SNNs more challenging. To learn the parameters of deep SNNs in an event-driven fashion as in inference of SNNs, backpropagation with respect to spike timing is proposed. Although this event-driven learning has the advantages of lower computational cost and memory occupation, the accuracy is far below the recurrent neural network-like learning approaches. In this paper, we first analyze the commonly used temporal backpropagation training approach and prove that the sum of gradients remains unchanged between fully-connected and convolutional layers. Secondly, we show that the max pooling layer meets the above invariance rule, while the average pooling layer does not, which will suffer the gradient vanishing problem but can be revised to meet the requirement. Thirdly, we point out the reverse gradient problem for time-based gradients and propose a backward kernel that can solve this problem and keep the property of the invariable sum of gradients. The experimental results show that the proposed approach achieves state-of-the-art performance on CIFAR10 among time-based training methods. Also, this is the first time that the time-based backpropagation approach successfully trains SNN on the CIFAR100 dataset. Our code is available at https://github.com/zhuyaoyu/SNN-event-driven-learning.
Author Information
Yaoyu Zhu (Peking University)
Zhaofei Yu (Peking University)
Wei Fang (the School of Electronics Engineering and Computer Science, Peking University)
Xiaodong Xie (Peking University)
Tiejun Huang (Peking University)
Timothée Masquelier (CNRS)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Training Spiking Neural Networks with Event-driven Backpropagation »
Dates n/a. Room
More from the Same Authors
-
2022 Poster: Adaptation Accelerating Sampling-based Bayesian Inference in Attractor Neural Networks »
Xingsi Dong · Zilong Ji · Tianhao Chu · Tiejun Huang · Wenhao Zhang · Si Wu -
2022 Poster: SNN-RAT: Robustness-enhanced Spiking Neural Network through Regularized Adversarial Training »
Jianhao Ding · Tong Bu · Zhaofei Yu · Tiejun Huang · Jian Liu -
2022 Poster: Temporal Effective Batch Normalization in Spiking Neural Networks »
Chaoteng Duan · Jianhao Ding · Shiyan Chen · Zhaofei Yu · Tiejun Huang -
2022 Poster: Learning Optical Flow from Continuous Spike Streams »
Rui Zhao · Ruiqin Xiong · Jing Zhao · Zhaofei Yu · Xiaopeng Fan · Tiejun Huang -
2022 Spotlight: Lightning Talks 2A-2 »
Harikrishnan N B · Jianhao Ding · Juha Harviainen · Yizhen Wang · Lue Tao · Oren Mangoubi · Tong Bu · Nisheeth Vishnoi · Mohannad Alhanahnah · Mikko Koivisto · Aditi Kathpalia · Lei Feng · Nithin Nagaraj · Hongxin Wei · Xiaozhu Meng · Petteri Kaski · Zhaofei Yu · Tiejun Huang · Ke Wang · Jinfeng Yi · Jian Liu · Sheng-Jun Huang · Mihai Christodorescu · Songcan Chen · Somesh Jha -
2022 Spotlight: SNN-RAT: Robustness-enhanced Spiking Neural Network through Regularized Adversarial Training »
Jianhao Ding · Tong Bu · Zhaofei Yu · Tiejun Huang · Jian Liu -
2022 Poster: Oscillatory Tracking of Continuous Attractor Neural Networks Account for Phase Precession and Procession of Hippocampal Place Cells »
Tianhao Chu · Zilong Ji · Junfeng Zuo · Wenhao Zhang · Tiejun Huang · Yuanyuan Mi · Si Wu -
2021 Poster: Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks »
Xingsi Dong · Tianhao Chu · Tiejun Huang · Zilong Ji · Si Wu -
2021 Poster: Deep Residual Learning in Spiking Neural Networks »
Wei Fang · Zhaofei Yu · Yanqi Chen · Tiejun Huang · Timothée Masquelier · Yonghong Tian -
2020 Poster: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging »
Chu Zhou · Hang Zhao · Jin Han · Chang Xu · Chao Xu · Tiejun Huang · Boxin Shi -
2020 Poster: Learning Individually Inferred Communication for Multi-Agent Cooperation »
gang Ding · Tiejun Huang · Zongqing Lu -
2020 Oral: Learning Individually Inferred Communication for Multi-Agent Cooperation »
gang Ding · Tiejun Huang · Zongqing Lu -
2019 Poster: Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently »
Xiao Liu · Xiaolong Zou · Zilong Ji · Gengshuo Tian · Yuanyuan Mi · Tiejun Huang · K. Y. Michael Wong · Si Wu