Timezone: »
In recent years, neural implicit surface reconstruction methods have become popular for multi-view 3D reconstruction. In contrast to traditional multi-view stereo methods, these approaches tend to produce smoother and more complete reconstructions due to the inductive smoothness bias of neural networks. State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views. Yet, their performance drops significantly for larger and more complex scenes and scenes captured from sparse viewpoints. This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints, in particular in less-observed and textureless areas. Motivated by recent advances in the area of monocular geometry prediction, we systematically explore the utility these cues provide for improving neural implicit surface reconstruction. We demonstrate that depth and normal cues, predicted by general-purpose monocular estimators, significantly improve reconstruction quality and optimization time. Further, we analyse and investigate multiple design choices for representing neural implicit surfaces, ranging from monolithic MLP models over single-grid to multi-resolution grid representations. We observe that geometric monocular priors improve performance both for small-scale single-object as well as large-scale multi-object scenes, independent of the choice of representation.
Author Information
Zehao Yu (University of Tübingen)
Songyou Peng (ETH Zurich & MPI for Intelligent Systems)
Michael Niemeyer (Max Planck for Intelligent Systems)
Torsten Sattler (CIIRC, Czech Technical University in Prague)
Andreas Geiger (University of Tuebingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction »
Thu. Dec 1st 05:00 -- 07:00 PM Room Hall J #638
More from the Same Authors
-
2022 : PlanT: Explainable Planning Transformers via Object-Level Representations »
Katrin Renz · Kashyap Chitta · Otniel-Bogdan Mercea · A. Sophia Koepke · Zeynep Akata · Andreas Geiger -
2022 : KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients »
Niklas Hanselmann · Katrin Renz · Kashyap Chitta · Apratim Bhattacharyya · Andreas Geiger -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Poster: VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids »
Katja Schwarz · Axel Sauer · Michael Niemeyer · Yiyi Liao · Andreas Geiger -
2021 Oral: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger -
2021 Poster: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger -
2020 Poster: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis »
Katja Schwarz · Yiyi Liao · Michael Niemeyer · Andreas Geiger