Timezone: »
Recent neural methods for vehicle routing problems always train and test the deep models on the same instance distribution (i.e., uniform). To tackle the consequent cross-distribution generalization concerns, we bring the knowledge distillation to this field and propose an Adaptive Multi-Distribution Knowledge Distillation (AMDKD) scheme for learning more generalizable deep models. Particularly, our AMDKD leverages various knowledge from multiple teachers trained on exemplar distributions to yield a light-weight yet generalist student model. Meanwhile, we equip AMDKD with an adaptive strategy that allows the student to concentrate on difficult distributions, so as to absorb hard-to-master knowledge more effectively. Extensive experimental results show that, compared with the baseline neural methods, our AMDKD is able to achieve competitive results on both unseen in-distribution and out-of-distribution instances, which are either randomly synthesized or adopted from benchmark datasets (i.e., TSPLIB and CVRPLIB). Notably, our AMDKD is generic, and consumes less computational resources for inference.
Author Information
Jieyi Bi (SUN YAT-SEN UNIVERSITY)
Yining Ma (National University of Singapore)
Jiahai Wang (SUN YAT-SEN UNIVERSITY)
Zhiguang Cao (Singapore Institute of Manufacturing Technology)
Jinbiao Chen (SUN YAT-SEN UNIVERSITY)
Yuan Sun (The University of Melbourne)
Yeow Meng Chee (National University of Singapore)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation »
Dates n/a. Room
More from the Same Authors
-
2021 Spotlight: Learning Large Neighborhood Search Policy for Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Poster: Graph Learning Assisted Multi-Objective Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang · Abhishek Gupta · Mingyan Lin -
2021 Poster: NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem »
Liang Xin · Wen Song · Zhiguang Cao · Jie Zhang -
2021 Poster: Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee »
Xiaofeng Fan · Yining Ma · Zhongxiang Dai · Wei Jing · Cheston Tan · Bryan Kian Hsiang Low -
2021 Poster: Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer »
Yining Ma · Jingwen Li · Zhiguang Cao · Wen Song · Le Zhang · Zhenghua Chen · Jing Tang -
2021 Poster: Learning Large Neighborhood Search Policy for Integer Programming »
Yaoxin Wu · Wen Song · Zhiguang Cao · Jie Zhang