Timezone: »
Understanding the behaviour of trained deep neural networks is a critical step in allowing reliable deployment of these networks in critical applications. One direction for obtaining insights on neural networks is through comparison of their internal representations. Comparing neural representations in neural networks is thus a challenging but important problem, which has been approached in different ways. The Centered Kernel Alignment (CKA) similarity metric, particularly its linear variant, has recently become a popular approach and has been widely used to compare representations of a network's different layers, of architecturally similar networks trained differently, or of models with different architectures trained on the same data. A wide variety of conclusions about similarity and dissimilarity of these various representations have been made using CKA. In this work we present an analysis that formally characterizes CKA sensitivity to a large class of simple transformations, which can naturally occur in the context of modern machine learning. This provides a concrete explanation of CKA sensitivity to outliers and to transformations that preserve the linear separability of the data, an important generalization attribute. Finally we propose an optimization-based approach for modifying representations to maintain functional behaviour while changing the CKA value. Our results illustrate that, in many cases, the CKA value can be easily manipulated without substantial changes to the functional behaviour of the models, and call for caution when leveraging activation alignment metrics.
Author Information
MohammadReza Davari (Concordia University, Montreal)
Stefan Horoi (Université de Montréal; Mila - Quebec Artificial Intelligence Institute)
Amine Natik (MILA)
Guillaume Lajoie (Mila, Université de Montréal)
Guy Wolf (Université de Montréal; Mila)
Eugene Belilovsky (Concordia University / Mila)
More from the Same Authors
-
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Probing Representation Forgetting in Continual Learning »
MohammadReza Davari · Eugene Belilovsky -
2022 : Reducing Forgetting in Federated Learning with Truncated Cross-Entropy »
Gwen Legate · Lucas Page-Caccia · Eugene Belilovsky -
2022 : Imitation from Observation With Bootstrapped Contrastive Learning »
Medric Sonwa · Johanna Hansen · Eugene Belilovsky -
2022 : Imitation from Observation With Bootstrapped Contrastive Learning »
Medric Sonwa · Johanna Hansen · Eugene Belilovsky -
2022 : Adversarial Attacks on Feature Visualization Methods »
Michael Eickenberg · Eugene Belilovsky · Jonathan Marty -
2023 Poster: A Unified, Scalable Framework for Neural Population Decoding »
Mehdi Azabou · Vinam Arora · Venkataramana Ganesh · Ximeng Mao · Santosh Nachimuthu · Michael Mendelson · Blake Richards · Matthew Perich · Guillaume Lajoie · Eva Dyer -
2023 Poster: Formalizing locality for normative synaptic plasticity models »
Colin Bredenberg · Ezekiel Williams · Cristina Savin · Blake Richards · Guillaume Lajoie -
2023 Poster: $\textbf{A}^2\textbf{CiD}^2$: Accelerating Asynchronous Communication in Decentralized Deep Learning »
Adel Nabli · Eugene Belilovsky · Edouard Oyallon -
2023 Poster: Guiding The Last Layer in Federated Learning with Pre-Trained Models »
Gwen Legate · Nicolas Bernier · Lucas Page-Caccia · Edouard Oyallon · Eugene Belilovsky -
2023 Poster: A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction »
Guillaume Huguet · Alexander Tong · Edward De Brouwer · Yanlei Zhang · Guy Wolf · Ian Adelstein · Smita Krishnaswamy -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yishi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Is a Modular Architecture Enough? »
Sarthak Mittal · Yoshua Bengio · Guillaume Lajoie -
2022 Poster: Long Range Graph Benchmark »
Vijay Prakash Dwivedi · Ladislav Rampášek · Michael Galkin · Ali Parviz · Guy Wolf · Anh Tuan Luu · Dominique Beaini -
2022 Poster: Can Hybrid Geometric Scattering Networks Help Solve the Maximum Clique Problem? »
Yimeng Min · Frederik Wenkel · Michael Perlmutter · Guy Wolf -
2022 Poster: Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules »
Yuhan Helena Liu · Arna Ghosh · Blake Richards · Eric Shea-Brown · Guillaume Lajoie -
2022 Poster: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2022 Poster: Recipe for a General, Powerful, Scalable Graph Transformer »
Ladislav Rampášek · Michael Galkin · Vijay Prakash Dwivedi · Anh Tuan Luu · Guy Wolf · Dominique Beaini -
2022 Poster: Is a Modular Architecture Enough? »
Sarthak Mittal · Yoshua Bengio · Guillaume Lajoie -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2020 : Extendable and invertible manifold learning with geometry regularized autoencoders »
Andres F Duque · Sacha Morin · Guy Wolf · Kevin Moon -
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: Untangling tradeoffs between recurrence and self-attention in artificial neural networks »
Giancarlo Kerg · Bhargav Kanuparthi · Anirudh Goyal · Kyle Goyette · Yoshua Bengio · Guillaume Lajoie -
2020 Poster: Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks »
Yimeng Min · Frederik Wenkel · Guy Wolf -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2019 : Opening Remarks »
Guillaume Lajoie · Jessica Thompson · Maximilian Puelma Touzel · Eli Shlizerman · Konrad Kording -
2019 Workshop: Real Neurons & Hidden Units: future directions at the intersection of neuroscience and AI »
Guillaume Lajoie · Eli Shlizerman · Maximilian Puelma Touzel · Jessica Thompson · Konrad Kording -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics »
Giancarlo Kerg · Kyle Goyette · Maximilian Puelma Touzel · Gauthier Gidel · Eugene Vorontsov · Yoshua Bengio · Guillaume Lajoie -
2018 Poster: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy -
2018 Spotlight: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy