Timezone: »
Offline reinforcement learning (ORL) holds great promise for robot learning due to its ability to learn from arbitrary pre-generated experience. However, current ORL benchmarks are almost entirely in simulation and utilize contrived datasets like replay buffers of online RL agents or sub-optimal trajectories, and thus hold limited relevance for real-world robotics. In this work (Real-ORL), we posit that data collected from safe operations of closely related tasks are more practical data sources for real-world robot learning. Under these settings, we perform an extensive (6500+ trajectories collected over 800+ robot hours and 270+ human labor hour) empirical study evaluating generalization and transfer capabilities of representative ORL methods on four real-world tabletop manipulation tasks. Our study finds that ORL and imitation learning prefer different action spaces, and that ORL algorithms can generalize from leveraging offline heterogeneous data sources and outperform imitation learning. We release our dataset and implementations at URL: https://sites.google.com/view/real-orl
Author Information
Gaoyue Zhou (Carnegie Mellon University)
Liyiming Ke (University of Washington)
Siddhartha Srinivasa (University of Washington)
Abhinav Gupta (Carnegie Mellon University Robotics Institute)
Aravind Rajeswaran (FAIR)
Vikash Kumar (FAIR, Meta-AI)

I am currently a research scientist at Facebook AI Research (FAIR). I have also spent some time at Google-Brain, OpenAI and Berkeley Artificial Intelligence Research (BAIR) Lab. I did my PhD at CSE, University of Washington's Movement Control Lab, under the supervision of Prof. Emanuel Todorov and Prof. Sergey Levine. I am interested in the areas of Robotics, and Embodied Artificial Intelligence. My general interest lies in developing artificial agents that are cheap, portable and exhibit complex behaviors.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Real World Offline Reinforcement Learning with Realistic Data Source »
Dates n/a. Room
More from the Same Authors
-
2021 : CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery »
Misha Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2021 : Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL »
Catherine Cang · Aravind Rajeswaran · Pieter Abbeel · Misha Laskin -
2022 : Shared Hardware, Shared Baselines: An Offline Robotics Benchmark »
Gaoyue Zhou · Victoria Dean -
2022 : Hearing Touch: Using Contact Microphones for Robot Manipulation »
Shaden Alshammari · Victoria Dean · Tess Hellebrekers · Pedro Morgado · Abhinav Gupta -
2022 : On the Global Convergence of the Regularized Generalized Gauss-Newton Algorithm »
Vincent Roulet · Maryam Fazel · Siddhartha Srinivasa · Zaid Harchaoui -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Offline Reinforcement Learning on Real Robot with Realistic Data Sources »
Gaoyue Zhou · Liyiming Ke · Siddhartha Srinivasa · Abhinav Gupta · Aravind Rajeswaran · Vikash Kumar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Fifteen-minute Competition Overview Video »
Guillaume Durandau · Yuval Tassa · Vittorio Caggiano · Vikash Kumar · Seungmoon Song · Massimo Sartori · -
2022 : Learning Dexterous Manipulation from Exemplar Object Trajectories and Pre-Grasps »
Sudeep Dasari · Vikash Kumar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Offline Reinforcement Learning on Real Robot with Realistic Data Sources »
Gaoyue Zhou · Liyiming Ke · Siddhartha Srinivasa · Abhinav Gupta · Aravind Rajeswaran · Vikash Kumar -
2022 : Policy Architectures for Compositional Generalization in Control »
Allan Zhou · Vikash Kumar · Chelsea Finn · Aravind Rajeswaran -
2022 : MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations »
Nicklas Hansen · Yixin Lin · Hao Su · Xiaolong Wang · Vikash Kumar · Aravind Rajeswaran -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 Competition: MyoChallenge: Learning contact-rich manipulation using a musculoskeletal hand »
Vittorio Caggiano · · Guillaume Durandau · Seungmoon Song · Yuval Tassa · Massimo Sartori · Vikash Kumar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2021 Poster: Visual Adversarial Imitation Learning using Variational Models »
Rafael Rafailov · Tianhe Yu · Aravind Rajeswaran · Chelsea Finn -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: Reinforcement Learning with Latent Flow »
Wenling Shang · Xiaofei Wang · Aravind Srinivas · Aravind Rajeswaran · Yang Gao · Pieter Abbeel · Misha Laskin -
2020 Workshop: Object Representations for Learning and Reasoning »
William Agnew · Rim Assouel · Michael Chang · Antonia Creswell · Eliza Kosoy · Aravind Rajeswaran · Sjoerd van Steenkiste -
2018 : Introduction »
Mustafa Mukadam · Sanjiban Choudhury · Siddhartha Srinivasa -
2018 Workshop: Imitation Learning and its Challenges in Robotics »
Mustafa Mukadam · Sanjiban Choudhury · Siddhartha Srinivasa -
2017 Poster: Towards Generalization and Simplicity in Continuous Control »
Aravind Rajeswaran · Kendall Lowrey · Emanuel Todorov · Sham Kakade