Timezone: »
Author Information
Cynthia Rudin (Duke)
Dan Bohus (Microsoft Research)
Brenna Argall (Northwestern University)
Alison Gopnik (University of California at Berkeley)
Alison Gopnik is a professor of psychology and affiliate professor of philosophy at the University of California at Berkeley. She received her BA from McGill University and her PhD. from Oxford University. She is an internationally recognized leader in the study of children’s learning and development and was one of the founders of the field of “theory of mind”, an originator of the “theory theory” of children’s development and more recently introduced the idea that probabilistic models and Bayesian inference could be applied to children’s learning. She has held a Center for Advanced Studies in the Behavioral Sciences Fellowship, the Moore Distinguished Scholar fellowship at the California Institute of Technology, the All Souls College Distinguished Visiting Fellowship at Oxford, and King’s College Distinguished Visiting Fellowship at Cambridge. She is an elected member of the Society of Experimental Psychologists and the American Academy of Arts and Sciences and a fellow of the Cognitive Science Society. She has been continuously supported by the NSF and was PI on a 2.5 million dollar interdisciplinary collaborative grant on causal learning from the McDonnell Foundation. She is the author or coauthor of over 100 journal articles and several books including “Words, thoughts and theories” MIT Press, 1997, and the bestselling and critically acclaimed popular books “The Scientist in the Crib” William Morrow, 1999, and “The Philosophical Baby; What children’s minds tell us about love, truth and the meaning of life”, which won the Cognitive Development Society Best Book Prize in 2011, and The Gardener and the Carpenter, Farrar, Strauss and Giroux, 2009, 2016. She has also written widely about cognitive science and psychology for Science, The New York Times, Scientific American, The New Yorker, The Times Literary Supplement, The New York Review of Books, New Scientist and Slate, among others. Her TED talk on her work has been viewed more than 2.8 million times. And she has frequently appeared on TV and radio including “The Charlie Rose Show” and “The Colbert Report”. Since 2013 she has written the Mind and Matter column for the Wall Street Journal.
Igor Mordatch (University of Washington)
Samuel Kaski (Aalto University and University of Manchester)
More from the Same Authors
-
2021 : The Neural MMO Platform for Massively Multiagent Research »
Joseph Suarez · Yilun Du · Clare Zhu · Igor Mordatch · Phillip Isola -
2021 : Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation »
Daniel Freeman · Erik Frey · Anton Raichuk · Sertan Girgin · Igor Mordatch · Olivier Bachem -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Targeted Causal Elicitation »
Nazaal Ibrahim · ST John · Zhigao Guo · Samuel Kaski -
2022 : Making the World More Equal, One Ride at a Time: Studying Public Transportation Initiatives Using Interpretable Causal Inference »
Gaurav Rajesh Parikh · Albert Sun · Jenny Huang · Lesia Semenova · Cynthia Rudin -
2022 : More trustworthy Bayesian optimization of materials properties by adding human into the loop »
Armi Tiihonen · Louis Filstroff · Petrus Mikkola · Emma Lehto · Samuel Kaski · Milica Todorović · Patrick Rinke -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Differentiable User Models »
Alex Hämäläinen · Mustafa Mert Çelikok · Samuel Kaski -
2022 Panel: Panel 3A-2: Linear tree shap… & Exploring the Whole… »
peng yu · Cynthia Rudin -
2022 : Imitation, Innovation and Caregiving in Children and AI »
Alison Gopnik -
2022 : Human and Machine Learning for Assistive and Rehabilitation Robots »
Brenna Argall -
2022 : Mixed-Reality Human-in-the-Loop Learning: Opportunities and Challenges »
Dan Bohus -
2022 : Let’s Give Domain Experts a Choice by Creating Many Approximately-Optimal Machine Learning Models »
Cynthia Rudin -
2022 : Collaborative AI for assisting virtual laboratories »
Samuel Kaski -
2022 : Language models and interactive decision-making »
Igor Mordatch -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2022 : HAPNEST: An efficient tool for generating large-scale genetics datasets from limited training data »
Sophie Wharrie · Zhiyu Yang · Vishnu Raj · Remo Monti · Rahul Gupta · Ying Wang · Alicia Martin · Luke O'Connor · Samuel Kaski · Pekka Marttinen · Pier Palamara · Christoph Lippert · Andrea Ganna -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Exploring the Whole Rashomon Set of Sparse Decision Trees »
Rui Xin · Chudi Zhong · Zhi Chen · Takuya Takagi · Margo Seltzer · Cynthia Rudin -
2022 Poster: Rethinking Nonlinear Instrumental Variable Models through Prediction Validity »
Chunxiao Li · Cynthia Rudin · Tyler H. McCormick -
2022 Poster: FasterRisk: Fast and Accurate Interpretable Risk Scores »
Jiachang Liu · Chudi Zhong · Boxuan Li · Margo Seltzer · Cynthia Rudin -
2022 Poster: Deconfounded Representation Similarity for Comparison of Neural Networks »
Tianyu Cui · Yogesh Kumar · Pekka Marttinen · Samuel Kaski -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2021 : Alison Gopnik - Casual Learning in Children and Computational Models »
Alison Gopnik -
2021 Poster: Unsupervised Learning of Compositional Energy Concepts »
Yilun Du · Shuang Li · Yash Sharma · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Misha Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2021 : AME: Interpretable Almost Exact Matching for Causal Inference »
Haoning Jiang · Thomas Howell · Neha Gupta · Vittorio Orlandi · Sudeepa Roy · Marco Morucci · Harsh Parikh · Alexander Volfovsky · Cynthia Rudin -
2020 : Contributed Talk - Cryo-ZSSR: multiple-image super-resolution based on deep internal learning »
Qinwen Huang · Reed Chen · Cynthia Rudin -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : How should researchers engage with controversial applications of AI? »
Logan Koepke · CATHERINE ONEIL · Tawana Petty · Cynthia Rudin · Deborah Raji · Shawn Bushway -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2019 Poster: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Spotlight: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2018 Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control »
Leslie Kaelbling · Martin Riedmiller · Marc Toussaint · Igor Mordatch · Roy Fox · Tuomas Haarnoja -
2018 : Invited Talk 6: Is it possible to have interpretable models for AI in Finance? »
Cynthia Rudin -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2017 : Life history and learning: Extended human childhood as a way to resolve explore/exploit trade-offs and improve hypothesis search »
Alison Gopnik -
2017 : Panel: "What can we learn from types of intelligent behaviour that are not usually covered by AI methods, and the other way round?" »
Sarah-Jane Allen · Alison Gopnik · Lucia Jacobs -
2017 : Alison Gopnik: 'The distinctive intelligence of young children: insights for AI from cognitive development' »
Alison Gopnik -
2017 Poster: Non-Stationary Spectral Kernels »
Sami Remes · Markus Heinonen · Samuel Kaski -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Interactive Control of Diverse Complex Characters with Neural Networks »
Igor Mordatch · Kendall Lowrey · Galen Andrew · Zoran Popovic · Emanuel Todorov -
2015 Oral: Interactive Control of Diverse Complex Characters with Neural Networks »
Igor Mordatch · Kendall Lowrey · Galen Andrew · Zoran Popovic · Emanuel Todorov -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski