Timezone: »
Tasks with large state space and sparse rewards present a longstanding challenge to reinforcement learning. In these tasks, an agent needs to explore the state space efficiently until it finds a reward. To deal with this problem, the community has proposed to augment the reward function with intrinsic reward, a bonus signal that encourages the agent to visit interesting states. In this work, we propose a new way of defining interesting states for environments with factored state spaces and complex chained dependencies, where an agent's actions may change the value of one entity that, in order, may affect the value of another entity. Our insight is that, in these environments, interesting states for exploration are states where the agent is uncertain whether (as opposed to how) entities such as the agent or objects have some influence on each other. We present ELDEN, Exploration via Local DepENdencies, a novel intrinsic reward that encourages the discovery of new interactions between entities. ELDEN utilizes a novel scheme --- the partial derivative of the learned dynamics to model the local dependencies between entities accurately and computationally efficiently. The uncertainty of the predicted dependencies is then used as an intrinsic reward to encourage exploration toward new interactions. We evaluate the performance of ELDEN on four different domains with complex dependencies, ranging from 2D grid worlds to 3D robotic tasks. In all domains, ELDEN correctly identifies local dependencies and learns successful policies, significantly outperforming previous state-of-the-art exploration methods.
Author Information
Zizhao Wang (University of Texas at Austin)
Jiaheng Hu (University of Texas at Austin)
Peter Stone (The University of Texas at Austin, Sony AI)
Roberto Martín-Martín (University of Texas at Austin)
More from the Same Authors
-
2020 : Paper 19: Multiagent Driving Policy for Congestion Reduction in a Large Scale Scenario »
Jiaxun Cui · Peter Stone -
2021 : Task-Independent Causal State Abstraction »
Zizhao Wang · Xuesu Xiao · Yuke Zhu · Peter Stone -
2021 : Leveraging Information about Background Music in Human-Robot Interaction »
Elad Liebman · Peter Stone -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2021 : Safe Evaluation For Offline Learning: \\Are We Ready To Deploy? »
Hager Radi · Josiah Hanna · Peter Stone · Matthew Taylor -
2022 : BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Mao Ye · Bo Liu · Stephen Wright · Peter Stone · Qiang Liu -
2022 : ABC: Adversarial Behavioral Cloning for Offline Mode-Seeking Imitation Learning »
Eddy Hudson · Ishan Durugkar · Garrett Warnell · Peter Stone -
2022 : ABC: Adversarial Behavioral Cloning for Offline Mode-Seeking Imitation Learning »
Eddy Hudson · Ishan Durugkar · Garrett Warnell · Peter Stone -
2023 : Latent Skill Discovery for Chain-of-Thought Reasoning »
Zifan Xu · Haozhu Wang · Dmitriy Bespalov · Peter Stone · Yanjun Qi -
2023 : Open X-Embodiment: Robotic Learning Datasets and RT-X Models »
Quan Vuong · Ajinkya Jain · Alex Bewley · Alexander Irpan · Alexander Khazatsky · Anant Rai · Anikait Singh · Antonin Raffin · Ayzaan Wahid · Beomjoon Kim · Bernhard Schölkopf · brian ichter · Cewu Lu · Charles Xu · Chelsea Finn · Chenfeng Xu · Cheng Chi · Chenguang Huang · Chuer Pan · Chuyuan Fu · Coline Devin · Danny Driess · Deepak Pathak · Dhruv Shah · Dieter Büchler · Dmitry Kalashnikov · Dorsa Sadigh · Edward Johns · Federico Ceola · Fei Xia · Freek Stulp · Gaoyue Zhou · Gaurav Sukhatme · Gautam Salhotra · Ge Yan · Giulio Schiavi · Hao Su · Hao-Shu Fang · Haochen Shi · Heni Ben Amor · Henrik Christensen · Hiroki Furuta · Homer Walke · Hongjie Fang · Igor Mordatch · Ilija Radosavovic · Isabel Leal · Jacky Liang · Jaehyung Kim · Jan Schneider · Jasmine Hsu · Jeannette Bohg · Jiajun Wu · Jialin Wu · Jianlan Luo · Jiayuan Gu · Jie Tan · Jitendra Malik · Jonathan Tompson · Jonathan Yang · Joseph Lim · João Silvério · Junhyek Han · Kanishka Rao · Karl Pertsch · Karol Hausman · Keegan Go · Keerthana Gopalakrishnan · Ken Goldberg · Kevin Zhang · Keyvan Majd · Krishan Rana · Krishnan Srinivasan · Lawrence Yunliang Chen · Lerrel Pinto · Liam Tan · Lionel Ott · Lisa Lee · Masayoshi TOMIZUKA · Michael Ahn · Mingyu Ding · Mohan Kumar Srirama · Mohit Sharma · Moo J Kim · Nicklas Hansen · Nicolas Heess · Nikhil Joshi · Niko Suenderhauf · Norman Di Palo · Nur Muhammad Shafiullah · Oier Mees · Oliver Kroemer · Pannag Sanketi · Paul Wohlhart · Peng Xu · Pierre Sermanet · Priya Sundaresan · Rafael Rafailov · Ran Tian · Ria Doshi · Roberto Martín-Martín · Russell Mendonca · Rutav Shah · Ryan Hoque · Ryan Julian · Samuel Bustamante · Sean Kirmani · Sergey Levine · Sherry Q Moore · Shikhar Bahl · Shivin Dass · Shuran Song · Sichun Xu · Siddhant Haldar · Simeon Adebola · Simon Guist · Soroush Nasiriany · Stefan Schaal · Stefan Welker · Stephen Tian · Sudeep Dasari · Suneel Belkhale · Takayuki Osa · Tatsuya Harada · Tatsuya Matsushima · Ted Xiao · Tianhe Yu · Tianli Ding · Todor Davchev · Tony Zhao · Trevor Darrell · Vidhi Jain · Vincent Vanhoucke · Wei Zhan · Wenxuan Zhou · Wolfram Burgard · Xi Chen · Xiaolong Wang · Xinghao Zhu · Xuanlin Li · Yao Lu · Yevgen Chebotar · Yifan Zhou · Yifeng Zhu · Yonatan Bisk · Yoonyoung Cho · Youngwoon Lee · Yuchen Cui · Yueh-Hua Wu · Yujin Tang · Yuke Zhu · Yunzhu Li · Yusuke Iwasawa · Yutaka Matsuo · Zhuo Xu · Zichen Cui · Alexander Herzog · Abhishek Padalkar · Acorn Pooley · Anthony Brohan · Ben Burgess-Limerick · Christine Chan · Jeffrey Bingham · Jihoon Oh · Kendra Byrne · Kenneth Oslund · Kento Kawaharazuka · Maximilian Du · Mingtong Zhang · Naoaki Kanazawa · Travis Armstrong · Ying Xu · Yixuan Wang · Jan Peters -
2023 : Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-horizon Decision-Making in Embodied AI »
Emily Jin · Jiaheng Hu · Zhuoyi Huang · Ruohan Zhang · Jiajun Wu · Fei-Fei Li · Roberto Martín-Martín -
2023 : t-DGR: A Trajectory-Based Deep Generative Replay Method for Continual Learning in Decision Making »
William Yue · Bo Liu · Peter Stone -
2023 : Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-horizon Decision-Making in Embodied AI »
Emily Jin · Jiaheng Hu · Zhuoyi Huang · Ruohan Zhang · Jiajun Wu · Fei-Fei Li · Roberto Martín-Martín -
2023 Poster: FAMO: Fast Adaptive Multitask Optimization »
Bo Liu · Yihao Feng · Peter Stone · Qiang Liu -
2023 Poster: f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences »
Siddhant Agarwal · Ishan Durugkar · Peter Stone · Amy Zhang -
2023 Poster: LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning »
Bo Liu · Yifeng Zhu · Chongkai Gao · Yihao Feng · Qiang Liu · Yuke Zhu · Peter Stone -
2022 : Panel RL Theory-Practice Gap »
Peter Stone · Matej Balog · Jonas Buchli · Jason Gauci · Dhruv Madeka -
2022 : Panel RL Benchmarks »
Minmin Chen · Pablo Samuel Castro · Caglar Gulcehre · Tony Jebara · Peter Stone -
2022 : Invited talk: Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning »
Peter Stone -
2022 : Human in the Loop Learning for Robot Navigation and Task Learning from Implicit Human Feedback »
Peter Stone -
2022 Poster: BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu -
2022 Poster: Value Function Decomposition for Iterative Design of Reinforcement Learning Agents »
James MacGlashan · Evan Archer · Alisa Devlic · Takuma Seno · Craig Sherstan · Peter Wurman · Peter Stone -
2021 Poster: Adversarial Intrinsic Motivation for Reinforcement Learning »
Ishan Durugkar · Mauricio Tec · Scott Niekum · Peter Stone -
2021 Poster: Conflict-Averse Gradient Descent for Multi-task learning »
Bo Liu · Xingchao Liu · Xiaojie Jin · Peter Stone · Qiang Liu -
2021 Poster: Machine versus Human Attention in Deep Reinforcement Learning Tasks »
Sihang Guo · Ruohan Zhang · Bo Liu · Yifeng Zhu · Dana Ballard · Mary Hayhoe · Peter Stone -
2020 : Q&A: Peter Stone (The University of Texas at Austin): Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination, with Natasha Jaques (Google) [moderator] »
Peter Stone · Natasha Jaques -
2020 : Invited Speaker: Peter Stone (The University of Texas at Austin) on Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination »
Peter Stone -
2020 : Panel discussion »
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel -
2020 : Discussion Panel »
Pete Florence · Dorsa Sadigh · Carolina Parada · Jeannette Bohg · Roberto Calandra · Peter Stone · Fabio Ramos -
2020 : Invited talk: Peter Stone "Grounded Simulation Learning for Sim2Real with Connections to Off-Policy Reinforcement Learning" »
Peter Stone -
2020 Poster: Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks »
Lemeng Wu · Bo Liu · Peter Stone · Qiang Liu -
2020 Poster: An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch »
Siddharth Desai · Ishan Durugkar · Haresh Karnan · Garrett Warnell · Josiah Hanna · Peter Stone -
2018 : Peter Stone »
Peter Stone -
2018 : Control Algorithms for Imitation Learning from Observation »
Peter Stone -
2018 : Peter Stone »
Peter Stone -
2016 : Peter Stone (University of Texas at Austin) »
Peter Stone -
2015 Workshop: Learning, Inference and Control of Multi-Agent Systems »
Vicenç Gómez · Gerhard Neumann · Jonathan S Yedidia · Peter Stone