Timezone: »
As larger deep learning models are hard to interpret, there has been a recent focus on generating explanations of these black-box models. In contrast, we may have apriori explanations of how models should behave. In this paper, we formalize this notion as learning from \emph{explanation constraints} and provide a learning theoretic framework to analyze how such explanations can improve the learning of our models. One may naturally ask, ``When would these explanations be helpful?"Our first key contribution addresses this question via a class of models that satisfies these explanation constraints in expectation over new data. We provide a characterization of the benefits of these models (in terms of the reduction of their Rademacher complexities) for a canonical class of explanations given by gradient information in the settings of both linear models and two layer neural networks. In addition, we provide an algorithmic solution for our framework, via a variational approximation that achieves better performance and satisfies these constraints more frequently, when compared to simpler augmented Lagrangian methods to incorporate these explanations. We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
Author Information
Rattana Pukdee (Carnegie Mellon University)
Dylan Sam (Carnegie Mellon University)
Hi, my name is Dylan! I am currently a 2nd year PhD student in the MLD at CMU, where I am advised by Professor Zico Kotler. I am interested in developing principled machine learning and deep learning algorithms, specifically for settings with limited labeled data. More broadly, my research interests include weakly supervised learning, semi-supervised learning, and self-supervised learning. I am also interested in distribution shift, ensemble methods, and robustness.
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)
Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.
Maria-Florina Balcan (Carnegie Mellon University)
Pradeep Ravikumar (Carnegie Mellon University)
More from the Same Authors
-
2020 : An adversarially robust approach to security-constrained optimal power flow »
Neeraj Vijay Bedmutha · Priya Donti · J. Zico Kolter -
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 : Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation »
Melrose Roderick · Felix Berkenkamp · Fatemeh Sheikholeslami · J. Zico Kolter -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Denoised Smoothing with Sample Rejection for Robustifying Pretrained Classifiers »
Fatemeh Sheikholeslami · Wan-Yi Lin · Jan Hendrik Metzen · Huan Zhang · J. Zico Kolter -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2022 : Uncertainty-Driven Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2022 : Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes »
Sina Baharlouei · Fatemeh Sheikholeslami · Meisam Razaviyayn · J. Zico Kolter -
2023 : Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances »
Misha Khodak · Edmond Chow · Maria-Florina Balcan · Ameet Talwalkar -
2023 : Stackelberg Games with Side Information »
Keegan Harris · Steven Wu · Maria-Florina Balcan -
2023 : Stackelberg Games with Side Information »
Keegan Harris · Steven Wu · Maria-Florina Balcan -
2023 : Predicting the Performance of Foundation Models via Agreement-on-the-line »
Rahul Saxena · Aman Mehra · Taeyoun Kim · Christina Baek · J. Zico Kolter · Aditi Raghunathan -
2023 : Identifying Representations for Intervention Extrapolation »
Sorawit Saengkyongam · Elan Rosenfeld · Pradeep Ravikumar · Niklas Pfister · Jonas Peters -
2023 : Predicting the Performance of Foundation Models via Agreement-on-the-Line »
Rahul Saxena · Aman Mehra · Taeyoun Kim · Christina Baek · J. Zico Kolter · Aditi Raghunathan -
2023 : Reliable Test-Time Adaptation via Agreement-on-the-Line »
Eungyeup Kim · Mingjie Sun · Aditi Raghunathan · J. Zico Kolter -
2023 Workshop: XAI in Action: Past, Present, and Future Applications »
Chhavi Yadav · Michal Moshkovitz · Nave Frost · Suraj Srinivas · Bingqing Chen · Valentyn Boreiko · Himabindu Lakkaraju · J. Zico Kolter · Dotan Di Castro · Kamalika Chaudhuri -
2023 Poster: On the Importance of Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Fundamental Limits and Tradeoffs in Invariant Representation Learning »
Han Zhao · Chen Dan · Bryon Aragam · Tommi Jaakkola · Geoffrey Gordon · Pradeep Ravikumar -
2023 Poster: Meta-Learning Adversarial Bandit Algorithms »
Misha Khodak · Ilya Osadchiy · Keegan Harris · Maria-Florina Balcan · Kfir Y. Levy · Ron Meir · Steven Wu -
2023 Poster: Permutation Equivariant Neural Functionals »
Allan Zhou · Kaien Yang · Kaylee Burns · Adriano Cardace · Yiding Jiang · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: Sample based Explanations via Generalized Representers »
Che-Ping Tsai · Chih-Kuan Yeh · Pradeep Ravikumar -
2023 Poster: One-Step Diffusion Distillation via Deep Equilibrium Models »
Zhengyang Geng · Ashwini Pokle · J. Zico Kolter -
2023 Poster: Responsible AI (RAI) Games and Ensembles »
Yash Gupta · Runtian Zhai · Arun Suggala · Pradeep Ravikumar -
2023 Poster: Neural Functional Transformers »
Allan Zhou · Kaien Yang · Yiding Jiang · Kaylee Burns · Winnie Xu · Samuel Sokota · J. Zico Kolter · Chelsea Finn -
2023 Poster: Provably Bounding Neural Network Preimages »
Suhas Kotha · Christopher Brix · J. Zico Kolter · Krishnamurthy Dvijotham · Huan Zhang -
2023 Poster: iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models »
Tianyu Chen · Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2023 Poster: Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 Poster: Bicriteria Multidimensional Mechanism Design with Side Information »
Siddharth Prasad · Maria-Florina Balcan · Tuomas Sandholm -
2023 Poster: New Bounds for Hyperparameter Tuning of Regression Problems Across Instances »
Maria-Florina Balcan · Anh Nguyen · Dravyansh Sharma -
2023 Poster: Global Optimality in Bivariate Gradient-based DAG Learning »
Chang Deng · Kevin Bello · Pradeep Ravikumar · Bryon Aragam -
2023 Poster: Language Models are Weak Learners »
Hariharan Manikandan · Yiding Jiang · J. Zico Kolter -
2023 Poster: Reliable learning in challenging environments »
Maria-Florina Balcan · Steve Hanneke · Rattana Pukdee · Dravyansh Sharma -
2023 Oral: Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 Spotlight: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Zico Kolter, Adapt like you train: How optimization at training time affects model finetuning and adaptation »
J. Zico Kolter -
2022 : Panel Discussion »
Behnam Neyshabur · David Sontag · Pradeep Ravikumar · Erin Hartman -
2022 Workshop: Human in the Loop Learning (HiLL) Workshop at NeurIPS 2022 »
Shanghang Zhang · Hao Dong · Wei Pan · Pradeep Ravikumar · Vittorio Ferrari · Fisher Yu · Xin Wang · Zihan Ding -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Learning Options via Compression »
Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn -
2022 Poster: DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization »
Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Maximizing Revenue under Market Shrinkage and Market Uncertainty »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm -
2022 Poster: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 Poster: Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation »
Zhouxing Shi · Yihan Wang · Huan Zhang · J. Zico Kolter · Cho-Jui Hsieh -
2022 Poster: Test Time Adaptation via Conjugate Pseudo-labels »
Sachin Goyal · Mingjie Sun · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2022 Poster: Deep Equilibrium Approaches to Diffusion Models »
Ashwini Pokle · Zhengyang Geng · J. Zico Kolter -
2022 Poster: Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift »
Christina Baek · Yiding Jiang · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2022 Poster: First is Better Than Last for Language Data Influence »
Chih-Kuan Yeh · Ankur Taly · Mukund Sundararajan · Frederick Liu · Pradeep Ravikumar -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2022 Poster: The Pitfalls of Regularization in Off-Policy TD Learning »
Gaurav Manek · J. Zico Kolter -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Enforcing Robustness for Neural Network Policies »
J. Zico Kolter -
2021 Poster: Learning latent causal graphs via mixture oracles »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2021 Poster: Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 Poster: Joint inference and input optimization in equilibrium networks »
Swaminathan Gurumurthy · Shaojie Bai · Zachary Manchester · J. Zico Kolter -
2021 Poster: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2021 Poster: $(\textrm{Implicit})^2$: Implicit Layers for Implicit Representations »
Zhichun Huang · Shaojie Bai · J. Zico Kolter -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2021 Poster: Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds »
Yujia Huang · Huan Zhang · Yuanyuan Shi · J. Zico Kolter · Anima Anandkumar -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2021 Poster: Adversarially robust learning for security-constrained optimal power flow »
Priya Donti · Aayushya Agarwal · Neeraj Vijay Bedmutha · Larry Pileggi · J. Zico Kolter -
2021 Poster: Robustness between the worst and average case »
Leslie Rice · Anna Bair · Huan Zhang · J. Zico Kolter -
2021 Poster: Monte Carlo Tree Search With Iteratively Refining State Abstractions »
Samuel Sokota · Caleb Y Ho · Zaheen Ahmad · J. Zico Kolter -
2021 Oral: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2020 : Invited Talk (Zico Kolter) »
J. Zico Kolter -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 : Keynote by Zico Kolter »
J. Zico Kolter -
2020 Poster: Community detection using fast low-cardinality semidefinite programming
»
Po-Wei Wang · J. Zico Kolter -
2020 Poster: Deep Archimedean Copulas »
Chun Kai Ling · Fei Fang · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: On Learning Ising Models under Huber's Contamination Model »
Adarsh Prasad · Vishwak Srinivasan · Sivaraman Balakrishnan · Pradeep Ravikumar -
2020 Poster: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Spotlight: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 Poster: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: Generalized Boosting »
Arun Suggala · Bingbin Liu · Pradeep Ravikumar -
2020 Poster: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Spotlight: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Oral: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 Poster: On the (In)fidelity and Sensitivity of Explanations »
Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar -
2019 Poster: On Human-Aligned Risk Minimization »
Liu Leqi · Adarsh Prasad · Pradeep Ravikumar -
2019 Poster: Envy-Free Classification »
Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia -
2019 Poster: Learning Stable Deep Dynamics Models »
J. Zico Kolter · Gaurav Manek -
2019 Poster: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Spotlight: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Poster: Differentiable Convex Optimization Layers »
Akshay Agrawal · Brandon Amos · Shane Barratt · Stephen Boyd · Steven Diamond · J. Zico Kolter -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2019 Poster: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2019 Poster: Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation »
Chen Dan · Hong Wang · Hongyang Zhang · Yuchen Zhou · Pradeep Ravikumar -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2019 Poster: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Spotlight: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Oral: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2018 : Talk 1: Zico Kolter - Differentiable Physics and Control »
J. Zico Kolter -
2018 Poster: Differentiable MPC for End-to-end Planning and Control »
Brandon Amos · Ivan Jimenez · Jacob I Sacks · Byron Boots · J. Zico Kolter -
2018 Poster: The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models »
Chen Dan · Liu Leqi · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Connecting Optimization and Regularization Paths »
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar -
2018 Poster: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Spotlight: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: MixLasso: Generalized Mixed Regression via Convex Atomic-Norm Regularization »
Ian En-Hsu Yen · Wei-Cheng Lee · Kai Zhong · Sung-En Chang · Pradeep Ravikumar · Shou-De Lin -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Poster: Scaling provable adversarial defenses »
Eric Wong · Frank Schmidt · Jan Hendrik Metzen · J. Zico Kolter -
2018 Poster: Representer Point Selection for Explaining Deep Neural Networks »
Chih-Kuan Yeh · Joon Kim · Ian En-Hsu Yen · Pradeep Ravikumar -
2018 Tutorial: Adversarial Robustness: Theory and Practice »
J. Zico Kolter · Aleksander Madry -
2017 : Invited Talk: Sample and Computationally Efficient Active Learning Algorithms »
Maria-Florina Balcan -
2017 : Provable defenses against adversarial examples via the convex outer adversarial polytope »
J. Zico Kolter -
2017 : Pradeep Ravikumar (CMU) on A Parallel Primal-Dual Sparse Method for Extreme Classification »
Pradeep Ravikumar -
2017 Poster: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Oral: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2017 Poster: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2017 Spotlight: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2017 Poster: Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions »
Maria-Florina Balcan · Hongyang Zhang -
2017 Poster: Task-based End-to-end Model Learning in Stochastic Optimization »
Priya Donti · J. Zico Kolter · Brandon Amos -
2016 Poster: The Multiple Quantile Graphical Model »
Alnur Ali · J. Zico Kolter · Ryan Tibshirani -
2016 Poster: Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik -
2015 Poster: Fast Classification Rates for High-dimensional Gaussian Generative Models »
Tianyang Li · Adarsh Prasad · Pradeep Ravikumar -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Poster: A Representation Theory for Ranking Functions »
Harsh H Pareek · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2011 Workshop: Machine Learning for Sustainability »
Thomas Dietterich · J. Zico Kolter · Matthew A Brown -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Poster: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Spotlight: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Poster: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Session: Oral Session 5 »
Pradeep Ravikumar -
2011 Spotlight: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Oral Session 14 »
Pradeep Ravikumar -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Oral: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of \ell_1-regularizedMLE »
Pradeep Ravikumar · Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty