Timezone: »
Poster
Provable convergence guarantees for black-box variational inference
Justin Domke · Robert Gower · Guillaume Garrigos
Black-box variational inference is widely used in situations where there is no proof that its stochastic optimization succeeds. We suggest this is due to a theoretical gap in existing stochastic optimization proofs—namely the challenge of gradient estimators with unusual noise bounds, and a composite non-smooth objective. For dense Gaussian variational families, we observe that existing gradient estimators based on reparameterization satisfy a quadratic noise bound and give novel convergence guarantees for proximal and projected stochastic gradient descent using this bound. This provides rigorous guarantees that methods similar to those used in practice converge on realistic inference problems.
Author Information
Justin Domke (University of Massachusetts, Amherst)
Robert Gower (Flatiron Institute)
Guillaume Garrigos (Université Paris Cité)
More from the Same Authors
-
2021 : Stochastic Polyak Stepsize with a Moving Target »
Robert Gower · Aaron Defazio · Mike Rabbat -
2022 : A Stochastic Prox-Linear Method for CVaR Minimization »
Si Yi Meng · Vasileios Charisopoulos · Robert Gower -
2022 : Using quadratic equations for overparametrized models »
Shuang Li · William Swartworth · Martin Takac · Deanna Needell · Robert Gower -
2022 : PSPS: Preconditioned Stochastic Polyak Step-size method for badly scaled data »
Farshed Abdukhakimov · Chulu Xiang · Dmitry Kamzolov · Robert Gower · Martin Takac -
2023 : Level Set Teleportation: the Good, the Bad, and the Ugly »
Aaron Mishkin · Alberto Bietti · Robert Gower -
2023 : A novel analysis of gradient descent under directional smoothness »
Aaron Mishkin · Ahmed Khaled · Aaron Defazio · Robert Gower -
2023 : Variance Reduced Model Based Methods: New rates and adaptive step sizes »
Robert Gower · Frederik Kunstner · Mark Schmidt -
2023 : Robust gradient estimation in the presence of heavy-tailed noise »
Fabian Schaipp · Umut Simsekli · Robert Gower -
2023 Poster: Online Inventory Problems: Beyond the i.i.d. Setting with Online Convex Optimization »
Massil HIHAT · Stéphane Gaïffas · Guillaume Garrigos · Simon Bussy -
2023 Poster: Variational Inference with Gaussian Score Matching »
Chirag Modi · Robert Gower · Charles Margossian · Yuling Yao · David Blei · Lawrence Saul -
2023 Poster: Discriminative Calibration: Check Bayesian Computation from Simulations and Flexible Classifier »
Yuling Yao · Justin Domke -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 Poster: MCMC Variational Inference via Uncorrected Hamiltonian Annealing »
Tomas Geffner · Justin Domke -
2021 Poster: Amortized Variational Inference for Simple Hierarchical Models »
Abhinav Agrawal · Justin Domke -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 Poster: Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization »
Abhinav Agrawal · Daniel Sheldon · Justin Domke -
2020 Poster: Approximation Based Variance Reduction for Reparameterization Gradients »
Tomas Geffner · Justin Domke -
2019 Poster: Thompson Sampling and Approximate Inference »
My Phan · Yasin Abbasi Yadkori · Justin Domke -
2019 Poster: Provable Gradient Variance Guarantees for Black-Box Variational Inference »
Justin Domke -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: Towards closing the gap between the theory and practice of SVRG »
Othmane Sebbouh · Nidham Gazagnadou · Samy Jelassi · Francis Bach · Robert Gower -
2019 Poster: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Spotlight: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2018 Poster: Using Large Ensembles of Control Variates for Variational Inference »
Tomas Geffner · Justin Domke -
2018 Poster: Importance Weighting and Variational Inference »
Justin Domke · Daniel Sheldon