Timezone: »
Handling out-of-distribution (OOD) samples has become a major stake in the real-world deployment of machine learning systems. This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples: unseen classes and adversarial perturbations. First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test. This approach enables us to robustly test whether two independent sets of samples originate from the same distribution, and we demonstrate its effectiveness by discriminating between CIFAR-10 and CIFAR-10.1 with higher confidence than previous work. Motivated by this success, we introduce CADet (Contrastive Anomaly Detection), a novel method for OOD detection of single samples. CADet draws inspiration from MMD, but leverages the similarity between contrastive transformations of a same sample. CADet outperforms existing adversarial detection methods in identifying adversarially perturbed samples on ImageNet and achieves comparable performance to unseen label detection methods on two challenging benchmarks: ImageNet-O and iNaturalist. Significantly, CADet is fully self-supervised and requires neither labels for in-distribution samples nor access to OOD examples.
Author Information
Charles Guille-Escuret (Mila)
Pau Rodriguez (Apple)
David Vazquez (ServiceNow)
Ioannis Mitliagkas (University of Montreal)
Joao Monteiro (ServiceNow)
More from the Same Authors
-
2021 : A versatile and efficient approach to summarize speech into utterance-level representations »
Joao Monteiro · JAHANGIR ALAM · Tiago H Falk -
2021 : Randomly projecting out distribution shifts for improved robustness »
Isabela Albuquerque · Joao Monteiro · Tiago H Falk -
2021 : Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark »
Alexandre Lacoste · Evan Sherwin · Hannah Kerner · Hamed Alemohammad · Björn Lütjens · Jeremy Irvin · David Dao · Alex Chang · Mehmet Gunturkun · Alexandre Drouin · Pau Rodriguez · David Vazquez -
2022 : Neural Networks Efficiently Learn Low-Dimensional Representations with SGD »
Alireza Mousavi-Hosseini · Sejun Park · Manuela Girotti · Ioannis Mitliagkas · Murat Erdogdu -
2022 : Attention for Compositional Modularity »
Oleksiy Ostapenko · Pau Rodriguez · Alexandre Lacoste · Laurent Charlin -
2022 : Performative Prediction with Neural Networks »
Mehrnaz Mofakhami · Ioannis Mitliagkas · Gauthier Gidel -
2022 : Empirical Study on Optimizer Selection for Out-of-Distribution Generalization »
Hiroki Naganuma · Kartik Ahuja · Ioannis Mitliagkas · Shiro Takagi · Tetsuya Motokawa · Rio Yokota · Kohta Ishikawa · Ikuro Sato -
2022 : A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods »
Tiago Salvador · Kilian FATRAS · Ioannis Mitliagkas · Adam Oberman -
2022 : Exploring the Design Space of Generative Diffusion Processes for Sparse Graphs »
Pierre-André Noël · Pau Rodriguez -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2022 : Implicit Offline Reinforcement Learning via Supervised Learning »
Alexandre Piche · Rafael Pardinas · David Vazquez · Igor Mordatch · Igor Mordatch · Chris Pal -
2022 : Constraining Low-level Representations to Define Effective Confidence Scores »
Joao Monteiro · Pau Rodriguez · Pierre-Andre Noel · Issam Hadj Laradji · David Vázquez -
2023 : The Unsolved Challenges of LLMs in Open-Ended Web Tasks: A Case Study »
Rim Assouel · Tom Marty · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Sai Rajeswar Mudumba · Hector Palacios · Quentin Cappart · David Vazquez · Nicolas Chapados · Maxime Gasse · Alexandre Lacoste -
2023 : The Unsolved Challenges of LLMs in Open-Ended Web Tasks: A Case Study »
Rim Assouel · Tom Marty · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Sai Rajeswar Mudumba · Hector Palacios · Quentin Cappart · David Vazquez · Nicolas Chapados · Maxime Gasse · Alexandre Lacoste -
2023 : Capture the Flag: Uncovering Data Insights with Large Language Models »
Issam Hadj Laradji · Perouz Taslakian · Sai Rajeswar Mudumba · Valentina Zantedeschi · Alexandre Lacoste · Nicolas Chapados · David Vazquez · Chris Pal · Alexandre Drouin -
2023 : Capture the Flag: Uncovering Data Insights with Large Language Models »
Issam Hadj Laradji · Perouz Taslakian · Sai Rajeswar Mudumba · Valentina Zantedeschi · Alexandre Lacoste · Nicolas Chapados · David Vazquez · Chris Pal · Alexandre Drouin -
2023 Competition: NeurIPS 2023 Machine Unlearning Competition »
Eleni Triantafillou · Fabian Pedregosa · Meghdad Kurmanji · Kairan ZHAO · Gintare Karolina Dziugaite · Peter Triantafillou · Ioannis Mitliagkas · Vincent Dumoulin · Lisheng Sun · Peter Kairouz · Julio C Jacques Junior · Jun Wan · Sergio Escalera · Isabelle Guyon -
2023 Poster: GEO-Bench: Toward Foundation Models for Earth Monitoring »
Alexandre Lacoste · Nils Lehmann · Pau Rodriguez · Evan Sherwin · Hannah Kerner · Björn Lütjens · Jeremy Irvin · David Dao · Hamed Alemohammad · Alexandre Drouin · Mehmet Gunturkun · Gabriel Huang · David Vazquez · Dava Newman · Yoshua Bengio · Stefano Ermon · Xiaoxiang Zhu -
2023 Poster: DeepPCR: Parallelizing Sequential Operations in Neural Networks »
Federico Danieli · Miguel Sarabia · Xavier Suau Cuadros · Pau Rodriguez · Luca Zappella -
2023 Poster: Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation »
Sébastien Lachapelle · Divyat Mahajan · Ioannis Mitliagkas · Simon Lacoste-Julien -
2023 Poster: Group Robust Classification Without Any Group Information »
Christos Tsirigotis · Joao Monteiro · Pau Rodriguez · David Vazquez · Aaron Courville -
2023 Oral: Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation »
Sébastien Lachapelle · Divyat Mahajan · Ioannis Mitliagkas · Simon Lacoste-Julien -
2022 Poster: Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Bound »
Charles Guille-Escuret · Adam Ibrahim · Baptiste Goujaud · Ioannis Mitliagkas -
2021 : [O2] Not too close and not too far: enforcing monotonicity requires penalizing the right points »
Joao Monteiro · · Hossein Hajimirsadeghi · Greg Mori -
2021 : A versatile and efficient approach to summarize speech into utterance-level representations »
Joao Monteiro · JAHANGIR ALAM · Tiago H Falk -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2020 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · sanae lotfi · Charles Guille-Escuret · Tolga Ergen · Dongruo Zhou -
2020 : Contributed Video: A Study of Condition Numbers for First-Order Optimization, Charles Guille-Escuret »
Charles Guille-Escuret -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2018 : Poster spotlight #2 »
Nicolo Fusi · Chidubem Arachie · Joao Monteiro · Steffen Wolf