Timezone: »
Poster
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with $\epsilon$-Greedy Exploration
Shuai Zhang · Hongkang Li · Meng Wang · Miao Liu · Pin-Yu Chen · Songtao Lu · Sijia Liu · Keerthiram Murugesan · Subhajit Chaudhury
This paper provides a theoretical understanding of deep Q-Network (DQN) with the $\varepsilon$-greedy exploration in deep reinforcement learning.Despite the tremendous empirical achievement of the DQN, its theoretical characterization remains underexplored.First, the exploration strategy is either impractical or ignored in the existing analysis. Second, in contrast to conventional Q-learning algorithms, the DQN employs the target network and experience replay to acquire an unbiased estimation of the mean-square Bellman error (MSBE) utilized in training the Q-network. However,the existing theoretical analysis of DQNs lacks convergence analysis or bypasses the technical challenges by deploying a significantly overparameterized neural network, which is not computationally efficient. This paper provides the first theoretical convergence and sample complexity analysis of the practical setting of DQNs with $\epsilon$-greedy policy. We prove an iterative procedure with decaying $\epsilon$ converges to the optimal Q-value function geometrically. Moreover, a higher level of $\epsilon$ values enlarges the region of convergence but slows down the convergence, while the opposite holds for a lower level of $\epsilon$ values. Experiments justify our established theoretical insights on DQNs.
Author Information
Shuai Zhang (New Jersey Institute of Technology)
Hongkang Li (Rensselaer Polytechnic Institute)
Meng Wang (Rensselaer Polytechnic Institute (RPI))
Miao Liu (IBM)
Pin-Yu Chen (IBM Research)
Songtao Lu (IBM Thomas J. Watson Research Center)
Sijia Liu (Michigan State University)
Keerthiram Murugesan (IBM Research)
Subhajit Chaudhury (International Business Machines)
More from the Same Authors
-
2021 Spotlight: MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge »
Geng Yuan · Xiaolong Ma · Wei Niu · Zhengang Li · Zhenglun Kong · Ning Liu · Yifan Gong · Zheng Zhan · Chaoyang He · Qing Jin · Siyue Wang · Minghai Qin · Bin Ren · Yanzhi Wang · Sijia Liu · Xue Lin -
2021 : Sign-MAML: Efficient Model-Agnostic Meta-Learning by SignSGD »
Chen Fan · Parikshit Ram · Sijia Liu -
2022 : An Empirical Evaluation of Zeroth-Order Optimization Methods on AI-driven Molecule Optimization »
Elvin Lo · Pin-Yu Chen -
2022 : Improving Vertical Federated Learning by Efficient Communication with ADMM »
Chulin Xie · Pin-Yu Chen · Ce Zhang · Bo Li -
2022 : SCERL: A Benchmark for intersecting language and safe reinforcement learning »
Lan Hoang · Shivam Ratnakar · Nicolas Galichet · Akifumi Wachi · Keerthiram Murugesan · Songtao Lu · Mattia Atzeni · Michael Katz · Subhajit Chaudhury -
2022 : Learning in Factored Domains with Information-Constrained Visual Representations »
Tyler Malloy · Chris Sims · Tim Klinger · Matthew Riemer · Miao Liu · Gerald Tesauro -
2022 : On the Robustness of deep learning-based MRI Reconstruction to image transformations »
jinghan jia · Mingyi Hong · Yimeng Zhang · Mehmet Akcakaya · Sijia Liu -
2022 : Visual Prompting for Adversarial Robustness »
Aochuan Chen · Peter Lorenz · Yuguang Yao · Pin-Yu Chen · Sijia Liu -
2022 : NeuralFuse: Improving the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes »
Hao-Lun Sun · Lei Hsiung · Nandhini Chandramoorthy · Pin-Yu Chen · Tsung-Yi Ho -
2022 : Visual Prompting for Adversarial Robustness »
Aochuan Chen · Peter Lorenz · Yuguang Yao · Pin-Yu Chen · Sijia Liu -
2023 : AutoVP: An Automated Visual Prompting Framework and Benchmark »
Hsi-Ai Tsao · Lei Hsiung · Pin-Yu Chen · Sijia Liu · Tsung-Yi Ho -
2023 : Plansformer: Generating Symbolic Plans using Transformers »
Vishal Pallagani · Bharath Muppasani · Keerthiram Murugesan · Francesca Rossi · Lior Horesh · Biplav Srivastava · Francesco Fabiano · Andrea Loreggia -
2023 : Hierarchical Reinforcement Learning with AI Planning Models »
Junkyu Lee · Michael Katz · Don Joven Agravante · Miao Liu · Geraud Nangue Tasse · Tim Klinger · Shirin Sohrabi Araghi -
2023 : AutoVP: An Automated Visual Prompting Framework and Benchmark »
Hsi-Ai Tsao · Lei Hsiung · Pin-Yu Chen · Sijia Liu · Tsung-Yi Ho -
2023 : Transformers as Multi-Task Feature Selectors: Generalization Analysis of In-Context Learning »
Hongkang Li · Meng Wang · Songtao Lu · Hui Wan · Xiaodong Cui · Pin-Yu Chen -
2023 : What Improves the Generalization of Graph Transformer? A Theoretical Dive into Self-attention and Positional Encoding »
Hongkang Li · Meng Wang · Tengfei Ma · Sijia Liu · ZAIXI ZHANG · Pin-Yu Chen -
2023 : How to remove backdoors in diffusion models? »
Shengwei An · Sheng-Yen Chou · Kaiyuan Zhang · Qiuling Xu · Guanhong Tao · Guangyu Shen · Siyuan Cheng · Shiqing Ma · Pin-Yu Chen · Tsung-Yi Ho · Xiangyu Zhang -
2023 : From Trojan Horses to Castle Walls: Unveiling Bilateral Backdoor Effects in Diffusion Models »
Zhuoshi Pan · Yuguang Yao · Gaowen Liu · Bingquan Shen · H. Vicky Zhao · Ramana Kompella · Sijia Liu -
2023 : VillanDiffusion: A Unified Backdoor Attack Framework for Diffusion Models »
Sheng-Yen Chou · Pin-Yu Chen · Tsung-Yi Ho -
2023 Poster: An Alternating Optimization Method for Bilevel Problems under the Polyak-Ćojasiewicz Condition »
Quan Xiao · Songtao Lu · Tianyi Chen -
2023 Poster: VillanDiffusion: A Unified Backdoor Attack Framework for Diffusion Models »
Sheng-Yen Chou · Pin-Yu Chen · Tsung-Yi Ho -
2023 Poster: RADAR: Robust AI-Text Detection via Adversarial Learning »
Xiaomeng Hu · Pin-Yu Chen · Tsung-Yi Ho -
2023 Poster: SLM: A Smoothed First-Order Lagrangian Method for Structured Constrained Nonconvex Optimization »
Songtao Lu -
2023 Poster: HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models »
CHEN CHEN · Yuchen Hu · Chao-Han Huck Yang · Sabato Marco Siniscalchi · Pin-Yu Chen · Eng-Siong Chng -
2023 Poster: Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning »
Yihua Zhang · Yimeng Zhang · Aochuan Chen · jinghan jia · Jiancheng Liu · Gaowen Liu · Mingyi Hong · Shiyu Chang · Sijia Liu -
2023 Poster: Uncovering and Quantifying Social Biases in Code Generation »
Yan Liu · Xiaokang Chen · Yan Gao · Zhe Su · Fengji Zhang · Daoguang Zan · Jian-Guang Lou · Pin-Yu Chen · Tsung-Yi Ho -
2023 Poster: Model Sparsity Can Simplify Machine Unlearning »
jinghan jia · Jiancheng Liu · Parikshit Ram · Yuguang Yao · Gaowen Liu · Yang Liu · PRANAY SHARMA · Sijia Liu -
2022 : Q & A »
Sayak Paul · Sijia Liu · Pin-Yu Chen -
2022 : Deep dive on foundation models for code »
Sijia Liu -
2022 Tutorial: Foundational Robustness of Foundation Models »
Pin-Yu Chen · Sijia Liu · Sayak Paul -
2022 : Basics in foundation model and robustness »
Pin-Yu Chen · Sijia Liu -
2022 : SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data »
Ching-Yun Ko · Pin-Yu Chen · Jeet Mohapatra · Payel Das · Luca Daniel -
2022 : Conditional Moment Alignment for Improved Generalization in Federated Learning »
Jayanth Reddy Regatti · Songtao Lu · Abhishek Gupta · Ness Shroff -
2022 Poster: A Stochastic Linearized Augmented Lagrangian Method for Decentralized Bilevel Optimization »
Songtao Lu · Siliang Zeng · Xiaodong Cui · Mark Squillante · Lior Horesh · Brian Kingsbury · Jia Liu · Mingyi Hong -
2022 Poster: Fairness Reprogramming »
Guanhua Zhang · Yihua Zhang · Yang Zhang · Wenqi Fan · Qing Li · Sijia Liu · Shiyu Chang -
2022 Poster: Understanding Benign Overfitting in Gradient-Based Meta Learning »
Lisha Chen · Songtao Lu · Tianyi Chen -
2022 Poster: Advancing Model Pruning via Bi-level Optimization »
Yihua Zhang · Yuguang Yao · Parikshit Ram · Pu Zhao · Tianlong Chen · Mingyi Hong · Yanzhi Wang · Sijia Liu -
2022 Poster: Influencing Long-Term Behavior in Multiagent Reinforcement Learning »
Dong-Ki Kim · Matthew Riemer · Miao Liu · Jakob Foerster · Michael Everett · Chuangchuang Sun · Gerald Tesauro · Jonathan How -
2022 Poster: Make an Omelette with Breaking Eggs: Zero-Shot Learning for Novel Attribute Synthesis »
Yu-Hsuan Li · Tzu-Yin Chao · Ching-Chun Huang · Pin-Yu Chen · Wei-Chen Chiu -
2021 Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership »
Nghia Hoang · Lam Nguyen · Pin-Yu Chen · Tsui-Wei Weng · Sara Magliacane · Bryan Kian Hsiang Low · Anoop Deoras -
2021 Poster: Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Sparse Neural Networks »
Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2021 Poster: Taming Communication and Sample Complexities in Decentralized Policy Evaluation for Cooperative Multi-Agent Reinforcement Learning »
Xin Zhang · Zhuqing Liu · Jia Liu · Zhengyuan Zhu · Songtao Lu -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 Poster: Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot? »
Xiaolong Ma · Geng Yuan · Xuan Shen · Tianlong Chen · Xuxi Chen · Xiaohan Chen · Ning Liu · Minghai Qin · Sijia Liu · Zhangyang Wang · Yanzhi Wang -
2021 Poster: When does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? »
Lijie Fan · Sijia Liu · Pin-Yu Chen · Gaoyuan Zhang · Chuang Gan -
2021 Poster: MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge »
Geng Yuan · Xiaolong Ma · Wei Niu · Zhengang Li · Zhenglun Kong · Ning Liu · Yifan Gong · Zheng Zhan · Chaoyang He · Qing Jin · Siyue Wang · Minghai Qin · Bin Ren · Yanzhi Wang · Sijia Liu · Xue Lin -
2020 Poster: Training Stronger Baselines for Learning to Optimize »
Tianlong Chen · Weiyi Zhang · Zhou Jingyang · Shiyu Chang · Sijia Liu · Lisa Amini · Zhangyang "Atlas" Wang -
2020 Spotlight: Training Stronger Baselines for Learning to Optimize »
Tianlong Chen · Weiyi Zhang · Zhou Jingyang · Shiyu Chang · Sijia Liu · Lisa Amini · Zhangyang "Atlas" Wang -
2020 Poster: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2020 Poster: The Lottery Ticket Hypothesis for Pre-trained BERT Networks »
Tianlong Chen · Jonathan Frankle · Shiyu Chang · Sijia Liu · Yang Zhang · Zhangyang "Atlas" Wang · Michael Carbin -
2020 Spotlight: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2018 Poster: Learning Abstract Options »
Matthew Riemer · Miao Liu · Gerald Tesauro -
2017 : Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Spotlights & Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2016 Poster: Adaptive Smoothed Online Multi-Task Learning »
Keerthiram Murugesan · Hanxiao Liu · Jaime Carbonell · Yiming Yang