Timezone: »
The Option Keyboard (OK) was recently proposed as a method for transferring behavioral knowledge across tasks. OK transfers knowledge by adaptively combining subsets of known behaviors using Successor Features (SFs) and Generalized Policy Improvement (GPI).However, it relies on hand-designed state-features and task encodings which are cumbersome to design for every new environment.In this work, we propose the "Successor Features Keyboard" (SFK), which enables transfer with discovered state-features and task encodings.To enable discovery, we propose the "Categorical Successor Feature Approximator" (CSFA), a novel learning algorithm for estimating SFs while jointly discovering state-features and task encodings.With SFK and CSFA, we achieve the first demonstration of transfer with SFs in a challenging 3D environment where all the necessary representations are discovered.We first compare CSFA against other methods for approximating SFs and show that only CSFA discovers representations compatible with SF&GPI at this scale.We then compare SFK against transfer learning baselines and show that it transfers most quickly to long-horizon tasks.
Author Information
Wilka Carvalho Carvalho
Andre Saraiva (DeepMind)
Angelos Filos (DeepMind)
Andrew Lampinen (Google DeepMind)
Loic Matthey (DeepMind)
Richard L Lewis (University of Michigan)
Honglak Lee (LG AI Research / U. Michigan)
Satinder Singh (DeepMind)
Danilo Jimenez Rezende (Google DeepMind)
Daniel Zoran (DeepMind)
More from the Same Authors
-
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Reward is enough for convex MDPs »
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh -
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Alchemy: A benchmark and analysis toolkit for meta-reinforcement learning agents »
Jane Wang · Michael King · Nicolas Porcel · Zeb Kurth-Nelson · Tina Zhu · Charles Deck · Peter Choy · Mary Cassin · Malcolm Reynolds · Francis Song · Gavin Buttimore · David Reichert · Neil Rabinowitz · Loic Matthey · Demis Hassabis · Alexander Lerchner · Matt Botvinick -
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2021 : Fast Inference and Transfer of Compositional Task for Few-shot Task Generalization »
Sungryull Sohn · Hyunjae Woo · Jongwook Choi · Izzeddin Gur · Aleksandra Faust · Honglak Lee -
2021 : Learning Parameterized Task Structure for Generalization to Unseen Entities »
Anthony Liu · Sungryull Sohn · Honglak Lee -
2021 : Task-driven Discovery of Perceptual Schemas for Generalization in Reinforcement Learning »
Wilka Carvalho · Andrew Lampinen · Kyriacos Nikiforou · Felix Hill · Murray Shanahan -
2021 : SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning »
Jongjin Park · Younggyo Seo · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 : GrASP: Gradient-Based Affordance Selection for Planning »
Vivek Veeriah · Zeyu Zheng · Richard L Lewis · Satinder Singh -
2021 : Learning compositional tasks from language instructions »
Lajanugen Logeswaran · Wilka Carvalho · Honglak Lee -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2022 : Transformers generalize differently from information stored in context vs in weights »
Stephanie Chan · Ishita Dasgupta · Junkyung Kim · Dharshan Kumaran · Andrew Lampinen · Felix Hill -
2022 : Allele-conditional attention mechanism for HLA-peptide complex binding affinity prediction »
Rodrigo Hormazabal · Doyeong Hwang · Kiyoung Kim · Sehui Han · Kyunghoon Bae · Honglak Lee -
2022 : In-Context Policy Iteration »
Ethan Brooks · Logan Walls · Richard L Lewis · Satinder Singh -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 : Dynamics-Augmented Decision Transformer for Offline Dynamics Generalization »
Changyeon Kim · Junsu Kim · Younggyo Seo · Kimin Lee · Honglak Lee · Jinwoo Shin -
2022 : Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2022 : Compositional Task Generalization with Modular Successor Feature Approximators »
Wilka Carvalho Carvalho -
2022 : Learning Exploration Policies with View-based Intrinsic Rewards »
Yijie Guo · Yao Fu · Run Peng · Honglak Lee -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2023 : Evaluating VLMs for Property-Specific Annotation of 3D Objects »
Rishabh Kabra · Loic Matthey · Alexander Lerchner · Niloy Mitra -
2023 : Vision-Language Models as a Source of Rewards »
Harris Chan · Volodymyr Mnih · Feryal Behbahani · Michael Laskin · Luyu Wang · Fabio Pardo · Maxime Gazeau · Himanshu Sahni · Daniel Horgan · Kate Baumli · Yannick Schroecker · Stephen Spencer · Richie Steigerwald · John Quan · Gheorghe Comanici · Sebastian Flennerhag · Alexander Neitz · Lei Zhang · Tom Schaul · Satinder Singh · Clare Lyle · Tim Rocktäschel · Jack Parker-Holder · Kristian Holsheimer -
2023 : POMRL: No-Regret Learning-to-Plan with Increasing Horizons »
Khimya Khetarpal · Claire Vernade · Brendan O'Donoghue · Satinder Singh · Tom Zahavy -
2023 : Comparing Representational and Functional Similarity in Small Transformer Language Models »
Dan Friedman · Andrew Lampinen · Lucas Dixon · Danqi Chen · Asma Ghandeharioun -
2023 : TOD-Flow: Modeling the Structure of Task-Oriented Dialogues »
Sungryull Sohn · Yiwei Lyu · Anthony Liu · Lajanugen Logeswaran · Dong-Ki Kim · Dongsub Shim · Honglak Lee -
2023 : Reasoning about Action Preconditions with Programs »
Lajanugen Logeswaran · Sungryull Sohn · Yiwei Lyu · Anthony Liu · Dong-Ki Kim · Dongsub Shim · Moontae Lee · Honglak Lee -
2023 : Reasoning about Action Preconditions with Programs »
Lajanugen Logeswaran · Sungryull Sohn · Yiwei Lyu · Anthony Liu · Dong-Ki Kim · Dongsub Shim · Moontae Lee · Honglak Lee -
2023 : Prospector: Improving LLM Agents with Self-Asking and Trajectory Ranking »
Byoungjip Kim · Youngsoo Jang · Lajanugen Logeswaran · Geon-Hyeong Kim · Yu Jin Kim · Honglak Lee · Moontae Lee -
2023 : Prospector: Improving LLM Agents with Self-Asking and Trajectory Ranking »
Byoungjip Kim · Youngsoo Jang · Lajanugen Logeswaran · Geon-Hyeong Kim · Yu Jin Kim · Honglak Lee · Moontae Lee -
2023 : Comparing Representational and Functional Similarity in Small Transformer Language Models »
Dan Friedman · Andrew Lampinen · Lucas Dixon · Danqi Chen · Asma Ghandeharioun -
2023 : [Paper-Oral 2] MultiPrompter: Cooperative Prompt Optimization with Multi-Agent Reinforcement Learning »
Dong-Ki Kim · Sungryull Sohn · Lajanugen Logeswaran · Dongsub Shim · Honglak Lee -
2023 Poster: CycleNet: Rethinking Cycle Consistency in Text-Guided Diffusion for Image Manipulation »
Sihan Xu · Ziqiao Ma · Yidong Huang · Honglak Lee · Joyce Chai -
2023 Poster: SafeDICE: Offline Safe Imitation Learning with Non-Preferred Demonstrations »
Youngsoo Jang · Geon-Hyeong Kim · Jongmin Lee · Sungryull Sohn · Byoungjip Kim · Honglak Lee · Moontae Lee -
2023 Poster: Scalable 3D Captioning with Pretrained Models »
Tiange Luo · Chris Rockwell · Honglak Lee · Justin Johnson -
2023 Poster: Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2023 Poster: A Definition of Continual Reinforcement Learning »
David Abel · Andre Barreto · Benjamin Van Roy · Doina Precup · Hado van Hasselt · Satinder Singh -
2023 Poster: Improving neural network representations using human similarity judgments »
Lukas Muttenthaler · Lorenz Linhardt · Jonas Dippel · Robert Vandermeulen · Katherine Hermann · Andrew Lampinen · Simon Kornblith -
2023 Poster: Large Language Models can Implement Policy Iteration »
Ethan Brooks · Logan Walls · Richard L Lewis · Satinder Singh -
2023 Poster: Passive learning of active causal strategies in agents and language models »
Andrew Lampinen · Stephanie Chan · Ishita Dasgupta · Andrew Nam · Jane Wang -
2023 Poster: Structured State Space Models for In-Context Reinforcement Learning »
Chris Lu · Yannick Schroecker · Albert Gu · Emilio Parisotto · Jakob Foerster · Satinder Singh · Feryal Behbahani -
2023 Poster: Projection Regret: Reducing Background Bias for Novelty Detection via Diffusion Models »
Sungik Choi · Hankook Lee · Honglak Lee · Moontae Lee -
2023 Poster: Guide Your Agent with Adaptive Multimodal Rewards »
Changyeon Kim · Younggyo Seo · Hao Liu · Lisa Lee · Jinwoo Shin · Honglak Lee · Kimin Lee -
2022 : ReSPack: A Large-Scale Rectilinear Steiner Tree Packing Data Generator and Benchmark »
Kanghoon Lee · Youngjoon Park · Han-Seul Jeong · Deunsol Yoon · Sunghoon Hong · Sungryull Sohn · Minu Kim · Hanbum Ko · Moontae Lee · Honglak Lee · Kyunghoon Kim · Euihyuk Kim · Seonggeon Cho · Jaesang Min · Woohyung Lim -
2022 Poster: Palm up: Playing in the Latent Manifold for Unsupervised Pretraining »
Hao Liu · Tom Zahavy · Volodymyr Mnih · Satinder Singh -
2022 Poster: Approximate Value Equivalence »
Christopher Grimm · Andre Barreto · Satinder Singh -
2022 Poster: Transferring Pre-trained Multimodal Representations with Cross-modal Similarity Matching »
Byoungjip Kim · Sungik Choi · Dasol Hwang · Moontae Lee · Honglak Lee -
2022 Poster: Pure Transformers are Powerful Graph Learners »
Jinwoo Kim · Dat Nguyen · Seonwoo Min · Sungjun Cho · Moontae Lee · Honglak Lee · Seunghoon Hong -
2022 Poster: Data Distributional Properties Drive Emergent In-Context Learning in Transformers »
Stephanie Chan · Adam Santoro · Andrew Lampinen · Jane Wang · Aaditya Singh · Pierre Richemond · James McClelland · Felix Hill -
2022 Poster: OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology »
Cheng Jiang · Asadur Chowdury · Xinhai Hou · Akhil Kondepudi · Christian Freudiger · Kyle Conway · Sandra Camelo-Piragua · Daniel Orringer · Honglak Lee · Todd Hollon -
2022 Poster: Semantic Exploration from Language Abstractions and Pretrained Representations »
Allison Tam · Neil Rabinowitz · Andrew Lampinen · Nicholas Roy · Stephanie Chan · DJ Strouse · Jane Wang · Andrea Banino · Felix Hill -
2022 Poster: Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction »
Dilip Arumugam · Satinder Singh -
2022 Poster: Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost »
Sungjun Cho · Seonwoo Min · Jinwoo Kim · Moontae Lee · Honglak Lee · Seunghoon Hong -
2022 Poster: UniCLIP: Unified Framework for Contrastive Language-Image Pre-training »
Janghyeon Lee · Jongsuk Kim · Hyounguk Shon · Bumsoo Kim · Seung Hwan Kim · Honglak Lee · Junmo Kim -
2022 Poster: CEDe: A collection of expert-curated datasets with atom-level entity annotations for Optical Chemical Structure Recognition »
Rodrigo Hormazabal · Changyoung Park · Soonyoung Lee · Sehui Han · Yeonsik Jo · Jaewan Lee · Ahra Jo · Seung Hwan Kim · Jaegul Choo · Moontae Lee · Honglak Lee -
2022 Expo Talk Panel: Towards learning agents for solving complex real-world tasks »
Honglak Lee -
2021 : Reducing the Information Horizon of Bayes-Adaptive Markov Decision Processes via Epistemic State Abstraction »
Dilip Arumugam · Satinder Singh -
2021 : Wilka Carvalho Talk Q&A »
Wilka Carvalho Carvalho -
2021 : Opinion Contributed Talk: Wilka Carvalho »
Wilka Carvalho Carvalho -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2021 Poster: Improving Transferability of Representations via Augmentation-Aware Self-Supervision »
Hankook Lee · Kibok Lee · Kimin Lee · Honglak Lee · Jinwoo Shin -
2021 Poster: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2021 Poster: Reward is enough for convex MDPs »
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh -
2021 Poster: Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning »
Christopher Hoang · Sungryull Sohn · Jongwook Choi · Wilka Carvalho · Honglak Lee -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Learning State Representations from Random Deep Action-conditional Predictions »
Zeyu Zheng · Vivek Veeriah · Risto Vuorio · Richard L Lewis · Satinder Singh -
2021 Poster: SIMONe: View-Invariant, Temporally-Abstracted Object Representations via Unsupervised Video Decomposition »
Rishabh Kabra · Daniel Zoran · Goker Erdogan · Loic Matthey · Antonia Creswell · Matt Botvinick · Alexander Lerchner · Chris Burgess -
2021 Poster: Environment Generation for Zero-Shot Compositional Reinforcement Learning »
Izzeddin Gur · Natasha Jaques · Yingjie Miao · Jongwook Choi · Manoj Tiwari · Honglak Lee · Aleksandra Faust -
2021 Poster: Towards mental time travel: a hierarchical memory for reinforcement learning agents »
Andrew Lampinen · Stephanie Chan · Andrea Banino · Felix Hill -
2021 Oral: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Poster: Meta-Gradient Reinforcement Learning with an Objective Discovered Online »
Zhongwen Xu · Hado van Hasselt · Matteo Hessel · Junhyuk Oh · Satinder Singh · David Silver -
2020 Poster: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Spotlight: Learning to Play No-Press Diplomacy with Best Response Policy Iteration »
Thomas Anthony · Tom Eccles · Andrea Tacchetti · János Kramár · Ian Gemp · Thomas Hudson · Nicolas Porcel · Marc Lanctot · Julien Perolat · Richard Everett · Satinder Singh · Thore Graepel · Yoram Bachrach -
2020 Poster: What shapes feature representations? Exploring datasets, architectures, and training »
Katherine L. Hermann · Andrew Lampinen -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2020 Poster: The Value Equivalence Principle for Model-Based Reinforcement Learning »
Christopher Grimm · Andre Barreto · Satinder Singh · David Silver -
2020 Spotlight: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2020 Poster: Bridging Imagination and Reality for Model-Based Deep Reinforcement Learning »
Guangxiang Zhu · Minghao Zhang · Honglak Lee · Chongjie Zhang -
2019 : Equivariant Hamiltonian Flows »
Danilo Jimenez Rezende -
2019 : Coffee + Posters »
Benjamin Caine · Renhao Wang · Nazmus Sakib · Nana Otawara · Meha Kaushik · elmira amirloo · Nemanja Djuric · Johanna Rock · Tanmay Agarwal · Angelos Filos · Panagiotis Tigkas · Donsuk Lee · Wootae Jeon · Nikita Jaipuria · Pin Wang · Jinxin Zhao · Liangjun Zhang · Ashutosh Singh · Ershad Banijamali · Mohsen Rohani · Aman Sinha · Ameya Joshi · Ching-Yao Chan · Mohammed Abdou · Changhao Chen · Jong-Chan Kim · eslam mohamed · Matt OKelly · Nirvan Singhania · Hiroshi Tsukahara · Atsushi Keyaki · Praveen Palanisamy · Justin Norden · Micol Marchetti-Bowick · Yiming Gu · Hitesh Arora · Shubhankar Deshpande · Jeff Schneider · Shangling Jui · Vaneet Aggarwal · Tryambak Gangopadhyay · Qiaojing Yan -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Danilo Rezende »
Danilo Jimenez Rezende -
2019 Poster: Towards Interpretable Reinforcement Learning Using Attention Augmented Agents »
Alexander Mott · Daniel Zoran · Mike Chrzanowski · Daan Wierstra · Danilo Jimenez Rezende -
2019 Poster: Shaping Belief States with Generative Environment Models for RL »
Karol Gregor · Danilo Jimenez Rezende · Frederic Besse · Yan Wu · Hamza Merzic · Aaron van den Oord -
2019 Poster: Discovery of Useful Questions as Auxiliary Tasks »
Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Poster: High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks »
Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee -
2018 Poster: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Spotlight: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Poster: Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies »
Sungryull Sohn · Junhyuk Oh · Honglak Lee -
2018 Poster: Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies »
Alessandro Achille · Tom Eccles · Loic Matthey · Chris Burgess · Nicholas Watters · Alexander Lerchner · Irina Higgins -
2018 Spotlight: Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies »
Alessandro Achille · Tom Eccles · Loic Matthey · Chris Burgess · Nicholas Watters · Alexander Lerchner · Irina Higgins -
2018 Poster: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Spotlight: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Poster: Learning Hierarchical Semantic Image Manipulation through Structured Representations »
Seunghoon Hong · Xinchen Yan · Thomas Huang · Honglak Lee -
2017 : Invited Talk 5 »
Honglak Lee -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Variational Memory Addressing in Generative Models »
Jörg Bornschein · Andriy Mnih · Daniel Zoran · Danilo Jimenez Rezende -
2017 Poster: Value Prediction Network »
Junhyuk Oh · Satinder Singh · Honglak Lee -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision »
Xinchen Yan · Jimei Yang · Ersin Yumer · Yijie Guo · Honglak Lee -
2016 Poster: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Oral: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Poster: Towards Conceptual Compression »
Karol Gregor · Frederic Besse · Danilo Jimenez Rezende · Ivo Danihelka · Daan Wierstra -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2015 : Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Honglak Lee -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Spotlight: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Oral: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Learning Structured Output Representation using Deep Conditional Generative Models »
Kihyuk Sohn · Honglak Lee · Xinchen Yan -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee -
2015 Poster: Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning »
Shakir Mohamed · Danilo Jimenez Rezende -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Poster: Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Xiaoxiao Guo · Satinder Singh · Honglak Lee · Richard L Lewis · Xiaoshi Wang -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Poster: Improved Multimodal Deep Learning with Variation of Information »
Kihyuk Sohn · Wenling Shang · Honglak Lee -
2013 Poster: Reward Mapping for Transfer in Long-Lived Agents »
Xiaoxiao Guo · Satinder Singh · Richard L Lewis -
2013 Poster: Robust Image Denoising with Multi-Column Deep Neural Networks »
Forest Agostinelli · Michael R Anderson · Honglak Lee -
2012 Poster: Learning to Align from Scratch »
Gary B Huang · Marwan A Mattar · Honglak Lee · Erik Learned-Miller -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Poster: Reward Design via Online Gradient Ascent »
Jonathan D Sorg · Satinder Singh · Richard L Lewis -
2009 Poster: Unsupervised feature learning for audio classification using convolutional deep belief networks »
Honglak Lee · Peter Pham · Yan Largman · Andrew Y Ng -
2007 Poster: Sparse deep belief net model for visual area V2 »
Honglak Lee · Ekanadham Chaitanya · Andrew Y Ng -
2006 Poster: Efficient sparse coding algorithms, end-stopping and nCRF surround suppression »
Honglak Lee · Alexis Battle · Raina Rajat · Andrew Y Ng