Timezone: »
Spotlight Poster
Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics
Leon Klein · Andrew Foong · Tor Fjelde · Bruno Mlodozeniec · Marc Brockschmidt · Sebastian Nowozin · Frank Noe · Ryota Tomioka
*Molecular dynamics* (MD) simulation is a widely used technique to simulate molecular systems, most commonly at the all-atom resolution where equations of motion are integrated with timesteps on the order of femtoseconds ($1\textrm{fs}=10^{-15}\textrm{s}$). MD is often used to compute equilibrium properties, which requires sampling from an equilibrium distribution such as the Boltzmann distribution. However, many important processes, such as binding and folding, occur over timescales of milliseconds or beyond, and cannot be efficiently sampled with conventional MD.Furthermore, new MD simulations need to be performed for each molecular system studied.We present *Timewarp*, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method targeting the Boltzmann distribution. The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $10^{5} - 10^{6} \textrm{fs}$.Crucially, Timewarp is *transferable* between molecular systems: once trained, we show that it generalises to unseen small peptides (2-4 amino acids) at all-atom resolution, exploring their metastable states and providing wall-clock acceleration of sampling compared to standard MD.Our method constitutes an important step towards general, transferable algorithms for accelerating MD.
Author Information
Leon Klein (Freie Universität Berlin)
Andrew Foong (University of Cambridge)
PhD student from Malaysia working on Bayesian deep learning at the Computational and Biological Learning lab at the Cambridge University Engineering Department.
Tor Fjelde (University of Cambridge)
Bruno Mlodozeniec (University of Cambridge)
Marc Brockschmidt (Google Brain)
Sebastian Nowozin (DeepMind)
Frank Noe (FU Berlin)
Ryota Tomioka (Microsoft Research AI4Science)
More from the Same Authors
-
2021 Spotlight: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2022 : Representation Learning on Biomolecular Structures using Equivariant Graph Attention »
Tuan Le · Frank Noe · Djork-Arné Clevert -
2022 : Contextual Squeeze-and-Excitation »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2022 : FiT: Parameter Efficient Few-shot Transfer Learning »
Aliaksandra Shysheya · John Bronskill · Massimiliano Patacchiola · Sebastian Nowozin · Richard Turner -
2023 : Meta- (out-of-context) learning in neural networks »
Dmitrii Krasheninnikov · Egor Krasheninnikov · Bruno Mlodozeniec · David Krueger -
2023 : What Does Knowledge Distillation Distill? »
Cindy Wu · Ekdeep S Lubana · Bruno Mlodozeniec · Robert Kirk · David Krueger -
2023 : What Does Knowledge Distillation Distill? »
Cindy Wu · Ekdeep S Lubana · Bruno Mlodozeniec · Robert Kirk · David Krueger -
2023 : Meta- (out-of-context) learning in neural networks »
Dmitrii Krasheninnikov · Egor Krasheninnikov · Bruno Mlodozeniec · David Krueger -
2023 Poster: Equivariant flow matching »
Leon Klein · Andreas Krämer · Frank Noe -
2022 Poster: Unsupervised Learning of Group Invariant and Equivariant Representations »
Robin Winter · Marco Bertolini · Tuan Le · Frank Noe · Djork-Arné Clevert -
2022 Poster: Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2021 : Differentiable Programming in Molecular Physics »
Frank Noe -
2021 Poster: Smooth Normalizing Flows »
Jonas Köhler · Andreas Krämer · Frank Noe -
2021 Poster: An Information-theoretic Approach to Distribution Shifts »
Marco Federici · Ryota Tomioka · Patrick Forré -
2021 Poster: Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning »
Robin Winter · Frank Noe · Djork-Arné Clevert -
2021 Poster: How Tight Can PAC-Bayes be in the Small Data Regime? »
Andrew Foong · Wessel Bruinsma · David Burt · Richard Turner -
2021 Poster: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: Collapsed Variational Bounds for Bayesian Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Andrew Foong · Richard Turner -
2021 Poster: Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect »
Lorenzo Noci · Kevin Roth · Gregor Bachmann · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: Memory Efficient Meta-Learning with Large Images »
John Bronskill · Daniela Massiceti · Massimiliano Patacchiola · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2020 : Invited Talk - Frank Noe: Deep Markov State Models versus Covid-19 »
Frank Noe -
2020 : Frank Noé - PauliNet: Deep Neural Network Solution of the Electronic Schrödinger Equation »
Frank Noe -
2020 : Invited Talk: Frank Noe - The sampling problem in statistical mechanics and Boltzmann-Generating Flows »
Frank Noe -
2020 Poster: Stochastic Normalizing Flows »
Hao Wu · Jonas Köhler · Frank Noe -
2020 Spotlight: Stochastic Normalizing Flows »
Hao Wu · Jonas Köhler · Frank Noe -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Spotlight: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Poster: Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift »
Jasper Snoek · Yaniv Ovadia · Emily Fertig · Balaji Lakshminarayanan · Sebastian Nowozin · D. Sculley · Joshua Dillon · Jie Ren · Zachary Nado -
2019 Poster: Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders »
Emile Mathieu · Charline Le Lan · Chris Maddison · Ryota Tomioka · Yee Whye Teh -
2018 : Invited Talk Session 1 »
Frank Noe -
2018 : Sebastian Nowozin »
Sebastian Nowozin -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2018 Poster: Deep Generative Markov State Models »
Hao Wu · Andreas Mardt · Luca Pasquali · Frank Noe -
2017 Poster: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Spotlight: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Poster: Stabilizing Training of Generative Adversarial Networks through Regularization »
Kevin Roth · Aurelien Lucchi · Sebastian Nowozin · Thomas Hofmann -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Training Generative Neural Samplers using Variational Divergence »
Sebastian Nowozin -
2016 Poster: Spectral Learning of Dynamic Systems from Nonequilibrium Data »
Hao Wu · Frank Noe -
2016 Poster: f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization »
Sebastian Nowozin · Botond Cseke · Ryota Tomioka -
2016 Poster: DISCO Nets : DISsimilarity COefficients Networks »
Diane Bouchacourt · Pawan K Mudigonda · Sebastian Nowozin -
2015 Poster: Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm »
Qinqing Zheng · Ryota Tomioka -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Multitask learning meets tensor factorization: task imputation via convex optimization »
Kishan Wimalawarne · Masashi Sugiyama · Ryota Tomioka -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2013 Poster: Convex Tensor Decomposition via Structured Schatten Norm Regularization »
Ryota Tomioka · Taiji Suzuki -
2012 Poster: Perfect Dimensionality Recovery by Variational Bayesian PCA »
Shinichi Nakajima · Ryota Tomioka · Masashi Sugiyama · S. Derin Babacan -
2011 Workshop: Optimization for Machine Learning »
Suvrit Sra · Stephen Wright · Sebastian Nowozin -
2011 Poster: Higher-Order Correlation Clustering for Image Segmentation »
Sungwoong Kim · Sebastian Nowozin · Pushmeet Kohli · Chang D. D Yoo -
2011 Poster: Statistical Performance of Convex Tensor Decomposition »
Ryota Tomioka · Taiji Suzuki · Kohei Hayashi · Hisashi Kashima -
2010 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Stephen Wright -
2010 Spotlight: Global Analytic Solution for Variational Bayesian Matrix Factorization »
Shinichi Nakajima · Masashi Sugiyama · Ryota Tomioka -
2010 Poster: Global Analytic Solution for Variational Bayesian Matrix Factorization »
Shinichi Nakajima · Masashi Sugiyama · Ryota Tomioka -
2009 Workshop: Optimization for Machine Learning »
Sebastian Nowozin · Suvrit Sra · S.V.N Vishwanthan · Stephen Wright -
2008 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Vishwanathan S V N -
2007 Spotlight: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2006 Poster: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Spotlight: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller