Timezone: »
Poster
Certification of Distributional Individual Fairness
Matthew Wicker · Vihari Piratla · Adrian Weller
Providing formal guarantees of algorithmic fairness is of paramount importance to socially responsible deployment of machine learning algorithms. In this work, we study formal guarantees, i.e., certificates, for individual fairness (IF) of neural networks. We start by introducing a novel convex approximation of IF constraints that exponentially decreases the computational cost of providing formal guarantees of local individual fairness. We highlight that prior methods are constrained by their focus on global IF certification and can therefore only scale to models with a few dozen hidden neurons, thus limiting their practical impact. We propose to certify \textit{distributional} individual fairness which ensures that for a given empirical distribution and all distributions within a $\gamma$-Wasserstein ball, the neural network has guaranteed individually fair predictions. Leveraging developments in quasi-convex optimization, we provide novel and efficient certified bounds on distributional individual fairness and show that our method allows us to certify and regularize neural networks that are several orders of magnitude larger than those considered by prior works. Moreover, we study real-world distribution shifts and find our bounds to be a scalable, practical, and sound source of IF guarantees.
Author Information
Matthew Wicker (Department of Computing, Imperial College London)
Vihari Piratla (University of Cambridge)
Adrian Weller (Cambridge, Alan Turing Institute)

Adrian Weller MBE is a Director of Research in Machine Learning at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. He is a Turing AI Fellow in Trustworthy Machine Learning, and heads Safe and Ethical AI at The Alan Turing Institute, the UK national institute for data science and AI. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. He serves on several boards and previously held senior roles in finance.
More from the Same Authors
-
2022 Poster: Scalable Infomin Learning »
Yanzhi Chen · weihao sun · Yingzhen Li · Adrian Weller -
2022 : Conformal Prediction for Resource Prioritisation in Predicting Rare and Dangerous Outcomes »
Varun Babbar · Umang Bhatt · Miri Zilka · Adrian Weller -
2023 : AI for Mathematics: A Cognitive Science Perspective »
Cedegao (Ced) Zhang · Katie Collins · Adrian Weller · Josh Tenenbaum -
2023 : Estimation of Concept Explanations Should be Uncertainty Aware »
Vihari Piratla · Juyeon Heo · Sukriti Singh · Adrian Weller -
2023 : Use Perturbations when Learning from Explanations »
Juyeon Heo · Vihari Piratla · Matthew Wicker · Adrian Weller -
2023 Poster: Quasi-Monte Carlo Graph Random Features »
Isaac Reid · Adrian Weller · Krzysztof M Choromanski -
2023 Poster: Use perturbations when learning from explanations »
Juyeon Heo · Vihari Piratla · Matthew Wicker · Adrian Weller -
2023 Poster: Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2023 Poster: Diffused Redundancy in Pre-trained Representations »
Vedant Nanda · Till Speicher · John Dickerson · Krishna Gummadi · Soheil Feizi · Adrian Weller -
2023 Poster: Controlling Text-to-Image Diffusion by Orthogonal Finetuning »
Zeju Qiu · Weiyang Liu · Haiwen Feng · Yuxuan Xue · Yao Feng · Zhen Liu · Dan Zhang · Adrian Weller · Bernhard Schölkopf -
2023 Poster: Learning to Receive Help: Intervention-Aware Concept Embedding Models »
Mateo Espinosa Zarlenga · Katie Collins · Krishnamurthy Dvijotham · Adrian Weller · Zohreh Shams · Mateja Jamnik -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Chefs' Random Tables: Non-Trigonometric Random Features »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2022 Poster: A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets »
Miri Zilka · Bradley Butcher · Adrian Weller -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Workshop: Human Centered AI »
Michael Muller · Plamen P Angelov · Shion Guha · Marina Kogan · Gina Neff · Nuria Oliver · Manuel Rodriguez · Adrian Weller -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Active Assessment of Prediction Services as Accuracy Surface Over Attribute Combinations »
Vihari Piratla · Soumen Chakrabarti · Sunita Sarawagi -
2021 Poster: Training for the Future: A Simple Gradient Interpolation Loss to Generalize Along Time »
Anshul Nasery · Soumyadeep Thakur · Vihari Piratla · Abir De · Sunita Sarawagi -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Workshop: Workshop on Human-Centric Machine Learning »
Plamen P Angelov · Nuria Oliver · Adrian Weller · Manuel Rodriguez · Isabel Valera · Silvia Chiappa · Hoda Heidari · Niki Kilbertus -
2019 Poster: Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models »
Yunfei Teng · Wenbo Gao · François Chalus · Anna Choromanska · Donald Goldfarb · Adrian Weller -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 : Invited talk: Challenges for Transparency »
Adrian Weller -
2017 : Closing remarks »
Adrian Weller -
2017 Symposium: Kinds of intelligence: types, tests and meeting the needs of society »
José Hernández-Orallo · Zoubin Ghahramani · Tomaso Poggio · Adrian Weller · Matthew Crosby -
2017 Poster: From Parity to Preference-based Notions of Fairness in Classification »
Muhammad Bilal Zafar · Isabel Valera · Manuel Rodriguez · Krishna Gummadi · Adrian Weller -
2017 Poster: The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings »
Krzysztof Choromanski · Mark Rowland · Adrian Weller -
2017 Poster: Uprooting and Rerooting Higher-Order Graphical Models »
Mark Rowland · Adrian Weller -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Symposium: Machine Learning and the Law »
Adrian Weller · Thomas D. Grant · Conrad McDonnell · Jatinder Singh -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara