Timezone: »

Structured State Space Models for In-Context Reinforcement Learning
Chris Lu · Yannick Schroecker · Albert Gu · Emilio Parisotto · Jakob Foerster · Satinder Singh · Feryal Behbahani

Tue Dec 12 03:15 PM -- 05:15 PM (PST) @ Great Hall & Hall B1+B2 #1226

Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks. These models also have fast inference speeds and parallelisable training, making them potentially useful in many reinforcement learning settings. We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel, allowing us to tackle reinforcement learning tasks. We show that our modified architecture runs asymptotically faster than Transformers in sequence length and performs better than RNN's on a simple memory-based task. We evaluate our modified architecture on a set of partially-observable environments and find that, in practice, our model outperforms RNN's while also running over five times faster. Then, by leveraging the model’s ability to handle long-range sequences, we achieve strong performance on a challenging meta-learning task in which the agent is given a randomly-sampled continuous control environment, combined with a randomly-sampled linear projection of the environment's observations and actions. Furthermore, we show the resulting model can adapt to out-of-distribution held-out tasks. Overall, the results presented in this paper show that structured state space models are fast and performant for in-context reinforcement learning tasks. We provide code at https://github.com/luchris429/s5rl.

Author Information

Chris Lu (University of Oxford)
Yannick Schroecker (Google DeepMind)
Albert Gu (Carnegie Mellon University)
Emilio Parisotto (School of Computer Science, Carnegie Mellon University)
Jakob Foerster (University of Oxford)

Jakob Foerster received a CIFAR AI chair in 2019 and is starting as an Assistant Professor at the University of Toronto and the Vector Institute in the academic year 20/21. During his PhD at the University of Oxford, he helped bring deep multi-agent reinforcement learning to the forefront of AI research and interned at Google Brain, OpenAI, and DeepMind. He has since been working as a research scientist at Facebook AI Research in California, where he will continue advancing the field up to his move to Toronto. He was the lead organizer of the first Emergent Communication (EmeCom) workshop at NeurIPS in 2017, which he has helped organize ever since.

Satinder Singh (DeepMind)
Feryal Behbahani (DeepMind)

More from the Same Authors