Timezone: »
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state.The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.
Author Information
Sungduk Yu (UC Irvine)
Walter Hannah (Lawrence Livermore National Labs)
Liran Peng
Jerry Lin (UC Irvine)
Mohamed Aziz Bhouri (Columbia University)
Ritwik Gupta (University of California, Berkeley)
Björn Lütjens (Massachusetts Institute of Technology)
Justus C. Will (University of California, Irvine)

Research in the intersection of Computer Science and Mathematics, currently focused on Deep Generative Models, Neural Data Compression, and the application of Machine Learning to Climate Science.
Gunnar Behrens (Institute of Atmospheric Physics, German Aerospace Center (DLR))
Julius Busecke (Columbia University / LDEO)
Nora Loose (Princeton University)
Charles Stern (Columbia University)
Tom Beucler (University of Lausanne)
Bryce Harrop
Benjamin Hillman
Andrea Jenney (Oregon State University)
Savannah L. Ferretti (University of California, Irvine)
Nana Liu (University of California, Irvine)
Animashree Anandkumar (NVIDIA / Caltech)
Noah Brenowitz (NVIDIA)
Veronika Eyring (Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany)
Nicholas Geneva (NVIDIA)
Pierre Gentine (Columbia University)
Stephan Mandt (University of California, Irvine)
Jaideep Pathak (NVIDIA Corporation)
Akshay Subramaniam (NVIDIA)
I am a Senior AI Developer Technology Engineer at NVIDIA. I got my PhD in Aeronautics from Stanford in 2019 working on topics related to turbulent flows and fluid mechanics, large eddy simulations, numerical methods and physics informed ML. At NVIDIA, I have been working on topics involving the convergence of physics and deep learning as well as data compression, recommender systems and automatic speech recognition.
Carl Vondrick (Columbia University)
Rose Yu (UC San Diego)
Laure Zanna (New York University)
Tian Zheng (Columbia University)

Tian Zheng is currently Professor and Department Chair of Statistics at Columbia University. In her research, she develops novel methods for exploring and understanding patterns in complex data from different application domains such as biology, psychology, climate modeling, etc. Her current projects are in the fields of statistical machine learning, spatiotemporal modeling, and social network analysis. Professor Zheng’s research has been recognized by the 2008 Outstanding Statistical Application Award from the American Statistical Association (ASA), the Mitchell Prize from ISBA, and a Google research award. She became a Fellow of the American Statistical Association in 2014 and a Fellow of the Institute of Mathematical Statistics in 2022. From 2017-2020, she was associate director for education at Columbia Data Science Institute. Professor Zheng received the 2017 Columbia Presidential Award for Outstanding Teaching. In 2021, she was recognized with a Lenfest Distinguished Columbia Faculty Award that recognizes the excellence of faculty as teachers and mentors of both undergraduate and graduate students.
Ryan Abernathey (Columbia University)
Fiaz Ahmed
David Bader
Pierre Baldi (UC Irvine)
Elizabeth Barnes
Christopher Bretherton (Allen Institute for AI)
Peter Caldwell (Lawrence Livermore National Lab)
Wayne Chuang
Yilun Han
YU HUANG (Columbia University)
Fernando Iglesias-Suarez (DLR)
Sanket Jantre (Brookhaven National Laboratory)
Karthik Kashinath (NVIDIA)
Marat Khairoutdinov (SUNY at Stony Brook)
Thorsten Kurth (Nvidia)
Nicholas Lutsko
Po-Lun Ma
Griffin Mooers (UC Irvine)
J. David Neelin (University of California-Los Angeles)
David Randall (Colorado State University)
Sara Shamekh
Mark Taylor (Sandia National Labs)
Nathan Urban (Brookhaven National Laboratory)
Janni Yuval
Guang Zhang (University of California-San Diego Scripps Inst of Oceanography)
Mike Pritchard (University of California, Irvine)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Poster: ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation »
Wed. Dec 13th through Thu the 14th Room Great Hall & Hall B1+B2 #105
More from the Same Authors
-
2020 : Paper 60: Traffic Forecasting using Vehicle-to-Vehicle Communication and Recurrent Neural Networks »
Rose Yu -
2021 : On the Generalization of Agricultural Drought Classification from Climate Data »
Julia Gottfriedsen · Max Berrendorf · Pierre Gentine · Markus Reichstein · Katja Weigel · Birgit Hassler · Veronika Eyring -
2021 : Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector »
Stephen McAleer · Christian Glaser · Pierre Baldi -
2021 : G-SpaNet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention »
Alexander Shmakov · Shih-chieh Hsu · Pierre Baldi -
2021 : Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs »
Harshini Mangipudi · Griffin Mooers · Mike Pritchard · Tom Beucler · Stephan Mandt -
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 : Emulating Fast Processes in Climate Models »
Noah Brenowitz · W. Andre Perkins · Jacqueline M. Nugent · Oliver Watt-Meyer · Spencer K. Clark · Anna Kwa · Brian Henn · Jeremy McGibbon · Christopher S. Bretherton -
2022 : Geometry-aware Autoregressive Models for Calorimeter Shower Simulations »
Junze Liu · Aishik Ghosh · Dylan Smith · Pierre Baldi · Daniel Whiteson -
2022 : A Novel Automatic Mixed Precision Approach For Physics Informed Training »
Jinze Xue · Akshay Subramaniam · Mark Hoemmen -
2022 : A Noether's theorem for gradient flow: Continuous symmetries of the architecture and conserved quantities of gradient flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Probabilistic Querying of Continuous-Time Sequential Events »
Alex Boyd · Yuxin Chang · Stephan Mandt · Padhraic Smyth -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 : An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes »
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt -
2022 : DL-Corrector-Remapper: A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting »
Tao Ge · Jaideep Pathak · Akshay Subramaniam · Karthik Kashinath -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 : FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator »
Jaideep Pathak · Shashank Subramanian · Peter Harrington · Thorsten Kurth · Andre Graubner · Morteza Mardani · David Hall · Karthik Kashinath · Anima Anandkumar -
2022 : Charting Flat Minima Using the Conserved Quantities of Gradient Flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Rethinking Neural Relational Inference for Granger Causal Discovery »
Stefanos Bennett · Rose Yu -
2022 : Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments »
JB Lanier · Stephen McAleer · Pierre Baldi · Roy Fox -
2023 : Towards Fast Stochastic Sampling in Diffusion Generative Models »
Kushagra Pandey · Maja Rudolph · Stephan Mandt -
2023 : DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting »
Salva Rühling Cachay · Bo Zhao · Hailey Joren · Rose Yu -
2023 : Towards Large Language Models as Copilots for Theorem Proving in Lean »
Peiyang Song · Kaiyu Yang · Animashree Anandkumar -
2023 : Empowering Domain Experts to Detect Social Bias in Generative AI with User-Friendly Interfaces »
Roy Jiang · Rafal Kocielnik · Adhithya Prakash Saravanan · Pengrui Han · R. Michael Alvarez · Animashree Anandkumar -
2023 : Physics-Informed Neural Operators with Exact Differentiation on Arbitrary Geometries »
Colin White · Julius Berner · Jean Kossaifi · Mogab Elleithy · David Pitt · Daniel Leibovici · Zongyi Li · Kamyar Azizzadenesheli · Animashree Anandkumar -
2023 : Understanding Pathologies of Deep Heteroskedastic Regression »
Eliot Wong-Toi · Alex Boyd · Vincent Fortuin · Stephan Mandt -
2023 : Interpretable Joint Event-Particle Reconstruction at NOvA with Sparse CNNs and Transformers »
Alexander Shmakov · Alejandro Yankelevich · Jianming Bian · Pierre Baldi -
2023 : Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds »
Justus C. Will · Andrea Jenney · Kara Lamb · Mike Pritchard · Colleen Kaul · Po-Lun Ma · Jacob Shpund · Kyle Pressel · Marcus van Lier-Walqui · Stephan Mandt -
2023 : Exploring Social Bias in Downstream Applications of Text-to-Image Foundation Models »
Adhithya Prakash Saravanan · Rafal Kocielnik · Roy Jiang · Pengrui Han · Animashree Anandkumar -
2023 : Stress-testing the coupled behavior of hybrid physics-machine learning climate simulations on an unseen, warmer climate »
Jerry Lin · Mohamed Aziz Bhouri · Tom Beucler · Sungduk Yu · Mike Pritchard -
2023 : Voyager: An Open-Ended Embodied Agent with Large Language Models »
Guanzhi Wang · Yuqi Xie · Yunfan Jiang · Ajay Mandlekar · Chaowei Xiao · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Voyager: An Open-Ended Embodied Agent with Large Language Models »
Guanzhi Wang · Yuqi Xie · Yunfan Jiang · Ajay Mandlekar · Chaowei Xiao · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : AttentionStitch: How Attention Solves the Speech Editing Problem »
Antonios Alexos · Pierre Baldi -
2023 : Understanding Mode Connectivity via Parameter Space Symmetry »
Bo Zhao · Nima Dehmamy · Robin Walters · Rose Yu -
2023 : Selective Perception: Learning Concise State Descriptions for Language Model Actors »
Kolby T Nottingham · Yasaman Razeghi · Kyungmin Kim · JB Lanier · Pierre Baldi · Roy Fox · Sameer Singh -
2023 : Selective Perception: Learning Concise State Descriptions for Language Model Actors »
Kolby T Nottingham · Yasaman Razeghi · Kyungmin Kim · JB Lanier · Pierre Baldi · Roy Fox · Sameer Singh -
2023 : Voyager: An Open-Ended Embodied Agent with Large Language Models »
Guanzhi Wang · Yuqi Xie · Yunfan Jiang · Ajay Mandlekar · Chaowei Xiao · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Voyager: An Open-Ended Embodied Agent with Large Language Models »
Guanzhi Wang · Yuqi Xie · Yunfan Jiang · Ajay Mandlekar · Chaowei Xiao · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Eureka: Human-Level Reward Design via Coding Large Language Models »
Jason Ma · William Liang · Guanzhi Wang · De-An Huang · Osbert Bastani · Dinesh Jayaraman · Yuke Zhu · Linxi Fan · Animashree Anandkumar -
2023 : Simulating the Air Quality Impact of Prescribed Fires Using a Graph Neural Network-Based PM2.5 Emissions Forecasting System »
Kyleen Liao · Jatan Buch · Kara Lamb · Pierre Gentine -
2023 : ACE: A fast, skillful learned global atmospheric model for climate prediction »
Oliver Watt-Meyer · Gideon Dresdner · Jeremy McGibbon · Spencer K. Clark · James Duncan · Brian Henn · Matthew Peters · Noah Brenowitz · Karthik Kashinath · Mike Pritchard · Boris Bonev · Christopher S. Bretherton -
2023 : Understanding Mode Connectivity via Parameter Space Symmetry »
Bo Zhao · Nima Dehmamy · Robin Walters · Rose Yu -
2023 : ACE: A fast, skillful learned global atmospheric model for climate prediction »
Oliver Watt-Meyer · Gideon Dresdner · Jeremy McGibbon · Spencer K. Clark · James Duncan · Brian Henn · Matthew Peters · Noah Brenowitz · Karthik Kashinath · Mike Pritchard · Boris Bonev · Christopher S. Bretherton -
2023 : Simulating the Air Quality Impact of Prescribed Fires Using a Graph Neural Network-Based PM2.5 Emissions Forecasting System »
Kyleen Liao · Jatan Buch · Kara Lamb · Pierre Gentine -
2023 Workshop: The Symbiosis of Deep Learning and Differential Equations -- III »
Luca Herranz-Celotti · Martin Magill · Ermal Rrapaj · Winnie Xu · Qiyao Wei · Archis Joglekar · Michael Poli · Animashree Anandkumar -
2023 Workshop: Workshop on Advancing Neural Network Training (WANT): Computational Efficiency, Scalability, and Resource Optimization »
Julia Gusak · Jean Kossaifi · Alena Shilova · Rocco Sedona · Cristiana Bentes · Animashree Anandkumar · Olivier Beaumont -
2023 : Information theory, cognition, and deep learning: Challenges and opportunities »
Sarah Marzen · Stephan Mandt · Noah Goodman · Danielle S Bassett · Noga Zaslavsky · Rava Azeredo da Silveira · Ron M. Hecht · Ronit Bustin -
2023 Workshop: 6th Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Thomas Manzini · Robin Murphy · Eric Heim · Bertrand Saux · Katherine Picchione -
2023 Workshop: Deep Generative Models for Health »
Emanuele Palumbo · Laura Manduchi · Sonia Laguna · Melanie F. Pradier · Vincent Fortuin · Stephan Mandt · Julia Vogt -
2023 Workshop: New Frontiers of AI for Drug Discovery and Development »
Animashree Anandkumar · Ilija Bogunovic · Ti-chiun Chang · Quanquan Gu · Jure Leskovec · Michelle Li · Chong Liu · Nataša Tagasovska · Mengdi Wang · Wei Wang -
2023 Poster: Objaverse-XL: A Universe of 10M+ 3D Objects »
Matt Deitke · Ruoshi Liu · Matthew Wallingford · Huong Ngo · Oscar Michel · Aditya Kusupati · Alan Fan · Christian Laforte · Vikram Voleti · Samir Yitzhak Gadre · Eli VanderBilt · Aniruddha Kembhavi · Carl Vondrick · Georgia Gkioxari · Kiana Ehsani · Ludwig Schmidt · Ali Farhadi -
2023 Poster: GEO-Bench: Toward Foundation Models for Earth Monitoring »
Alexandre Lacoste · Nils Lehmann · Pau Rodriguez · Evan Sherwin · Hannah Kerner · Björn Lütjens · Jeremy Irvin · David Dao · Hamed Alemohammad · Alexandre Drouin · Mehmet Gunturkun · Gabriel Huang · David Vazquez · Dava Newman · Yoshua Bengio · Stefano Ermon · Xiaoxiang Zhu -
2023 Poster: Estimating the Rate-Distortion Function by Wasserstein Gradient Descent »
Yibo Yang · Stephan Eckstein · Marcel Nutz · Stephan Mandt -
2023 Poster: DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting »
Salva Rühling Cachay · Bo Zhao · Hailey Joren · Rose Yu -
2023 Poster: Lossy Image Compression with Conditional Diffusion Models »
Ruihan Yang · Stephan Mandt -
2023 Poster: Language Models can Solve Computer Tasks »
Geunwoo Kim · Pierre Baldi · Stephen McAleer -
2023 Poster: AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning »
Mohammadamin Tavakoli · Pierre Baldi · Ann Marie Carlton · Yin Ting Chiu · Alexander Shmakov · David Van Vranken -
2023 Poster: Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials »
Shengchao Liu · weitao Du · Yanjing Li · Zhuoxinran Li · Zhiling Zheng · Chenru Duan · Zhi-Ming Ma · Omar Yaghi · Animashree Anandkumar · Christian Borgs · Jennifer Chayes · Hongyu Guo · Jian Tang -
2023 Poster: End-To-End Latent Variational Diffusion Models for Inverse Problems in High Energy Physics »
Alexander Shmakov · Kevin Greif · Michael Fenton · Aishik Ghosh · Pierre Baldi · Daniel Whiteson -
2023 Poster: Zero-Shot Anomaly Detection via Batch Normalization »
Aodong Li · Chen Qiu · Marius Kloft · Padhraic Smyth · Maja Rudolph · Stephan Mandt -
2023 Poster: Automatic Integration for Spatiotemporal Neural Point Processes »
Zihao Zhou · Rose Yu -
2023 Poster: Geometry-Informed Neural Operator for Large-Scale 3D PDEs »
Zongyi Li · Nikola Kovachki · Chris Choy · Boyi Li · Jean Kossaifi · Shourya Otta · Mohammad Amin Nabian · Maximilian Stadler · Christian Hundt · Kamyar Azizzadenesheli · Animashree Anandkumar -
2023 Poster: LeanDojo: Theorem Proving with Retrieval-Augmented Language Models »
Kaiyu Yang · Aidan Swope · Alex Gu · Rahul Chalamala · Peiyang Song · Shixing Yu · Saad Godil · Ryan J Prenger · Animashree Anandkumar -
2023 Oral: LeanDojo: Theorem Proving with Retrieval-Augmented Language Models »
Kaiyu Yang · Aidan Swope · Alex Gu · Rahul Chalamala · Peiyang Song · Shixing Yu · Saad Godil · Ryan J Prenger · Animashree Anandkumar -
2022 : DL-Corrector-Remapper: A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting »
Tao Ge · Jaideep Pathak · Akshay Subramaniam · Karthik Kashinath -
2022 : Rose Yu: "Physics-Guided Deep Learning for Climate Science" »
Rose Yu -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 : Keynote Talk 2 »
Rose Yu -
2022 : Q & A »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 Tutorial: Data Compression with Machine Learning »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 : Tutorial part 1 »
Yibo Yang · Karen Ullrich · Stephan Mandt -
2022 : Panel Discussion I: Geometric and topological principles for representation learning in ML »
Irina Higgins · Taco Cohen · Erik Bekkers · Nina Miolane · Rose Yu -
2022 Workshop: The Fourth Workshop on AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Eric Heim · Guido Zarrella · Caleb Robinson -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 Poster: Representing Spatial Trajectories as Distributions »
Didac Suris Coll-Vinent · Carl Vondrick -
2022 Poster: Meta-Learning Dynamics Forecasting Using Task Inference »
Rui Wang · Robin Walters · Rose Yu -
2022 Poster: Symmetry Teleportation for Accelerated Optimization »
Bo Zhao · Nima Dehmamy · Robin Walters · Rose Yu -
2022 Poster: Private Multiparty Perception for Navigation »
Hui Lu · Mia Chiquier · Carl Vondrick -
2022 Poster: Predictive Querying for Autoregressive Neural Sequence Models »
Alex Boyd · Samuel Showalter · Stephan Mandt · Padhraic Smyth -
2022 Poster: xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture Radar Imagery »
Fernando Paolo · Tsu-ting Tim Lin · Ritwik Gupta · Bryce Goodman · Nirav Patel · Daniel Kuster · David Kroodsma · Jared Dunnmon -
2021 : Session 3 | Invited talk: Laure Zanna, "The future of climate modeling in the age of machine learning" »
Laure Zanna · Atilim Gunes Baydin -
2021 : Physics-Guided AI for Modeling Autonomous Vehicle Dynamics »
Rose Yu · Rose Yu -
2021 Poster: Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning »
Aodong Li · Alex Boyd · Padhraic Smyth · Stephan Mandt -
2021 Poster: XDO: A Double Oracle Algorithm for Extensive-Form Games »
Stephen McAleer · JB Lanier · Kevin A Wang · Pierre Baldi · Roy Fox -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Rose Yu »
Rose Yu -
2020 : Stephan Mandt »
Stephan Mandt -
2020 : Q/A and Discussion for Atmosphere Session »
Tom Beucler · Mike Pritchard · Elizabeth A. Barnes -
2020 : Michael Pritchard »
Mike Pritchard -
2020 : Q/A and Discussion for Water Session »
Surya Karthik Mukkavilli · Pierre Gentine · Grey Nearing -
2020 : Pierre Gentine »
Pierre Gentine -
2020 : Rose Yu - Physics-Guided AI for Learning Spatiotemporal Dynamics »
Rose Yu -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 : Invited Talk 11 Q&A by Rose »
Rose Yu -
2020 : Invited Talk 11: Tensor Methods for Efficient and Interpretable Spatiotemporal Learning »
Rose Yu -
2020 Poster: Listening to Sounds of Silence for Speech Denoising »
Ruilin Xu · Rundi Wu · Yuko Ishiwaka · Carl Vondrick · Changxi Zheng -
2020 : Quantifying Uncertainty in Deep Spatiotemporal Forecasting for COVID-19 »
Yian Ma · Rose Yu -
2020 Poster: Deep Imitation Learning for Bimanual Robotic Manipulation »
Fan Xie · Alexander Chowdhury · M. Clara De Paolis Kaluza · Linfeng Zhao · Lawson Wong · Rose Yu -
2020 Poster: Learning Disentangled Representations of Videos with Missing Data »
Armand Comas · Chi Zhang · Zlatan Feric · Octavia Camps · Rose Yu -
2020 Session: Orals & Spotlights Track 06: Dynamical Sys/Density/Sparsity »
Animesh Garg · Rose Yu -
2020 Poster: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games »
Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi -
2019 Poster: Metric Learning for Adversarial Robustness »
Chengzhi Mao · Ziyuan Zhong · Junfeng Yang · Carl Vondrick · Baishakhi Ray -
2019 Poster: Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes »
Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi -
2018 : Long Range Sequence Generation via Multiresolution Adversarial Training »
Rose Yu -
2018 Poster: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2018 Oral: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Poster: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2014 Spotlight: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2013 Poster: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2013 Oral: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2012 Poster: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2012 Spotlight: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2011 Poster: A Machine Learning Approach to Predict Chemical Reactions »
Matthew A Kayala · Pierre Baldi -
2011 Poster: High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions »
Animashree Anandkumar · Vincent Tan · Alan S Willsky -
2011 Oral: High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions »
Animashree Anandkumar · Vincent Tan · Alan S Willsky -
2010 Workshop: Charting Chemical Space: Challenges and Opportunities for AI and Machine Learning »
Pierre Baldi · Klaus-Robert Müller · Gisbert Schneider -
2007 Poster: Mining Internet-Scale Software Repositories »
Erik Linstead · Paul Rigor · sushil bajracharya · cristina lopes · Pierre Baldi -
2006 Poster: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi -
2006 Talk: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi