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A key motivation for our work is interpretable data summarization, which is a core challenge in
reasoning about large datasets and machine learning models. Data summarization can be used, for
example, to select a representative subset of gene variants from a genetics dataset, or a collection
of most informative documents from a text database. When data are represented numerically, they
are often described via matrices, in which case linear algebra suggests a natural (and in a certain
sense optimal) way of performing data summarization: find the principal components corresponding
to the largest directions of variance. These principal components work well for black-box models
that are evaluated only in terms of prediction quality, but they are generally not interpretable in
terms of the domain from which the data are drawn. They do not correspond to, say, a particular
document or a gene variant, but rather a complex mixture of them. Neural networks, on which the
machine learning community increasingly relies, simply exacerbate this problem. A long-standing
challenge has been to find summaries of data which mimic the numerical properties of principal
components and which are also interpretable.

The cost of interpretability, when formulated this way, has strong connections to the so-called
Column Subset Selection Problem in Randomized Numerical Linear Algebra (RandNLA). It has
been extensively studied in the literature, resulting in optimal worst-case guarantees, developed for
the first time nearly fifteen years ago. These results are still relied upon as an important technical
tool in recent works, including the best paper at last year’s International Conference on Machine
Learning, which applied them to Gaussian Process regression. The worst-case results suggest that
the cost of interpretability should become progressively higher as the data summaries get larger.
To verify this, we carefully constructed a worst-case example for this problem; and we showed that,
for this example, the cost of interpretability does reach the worse-case bound for one size of the
summary, but then it rapidly drops down for both larger and smaller sizes. As it turns out, in this
and other worst-case examples, the high cost of interpretability is only a corner case.

To explain this, we go beyond worst-case analysis, and our results are able to accurately capture
the non-linear behavior of the cost of interpretability. Specifically, we conclude that, except for
certain pathological examples which we can characterize, the cost of interpretability is far smaller
than suggested by prior work, and it is often negligible for real-world problems. To construct our
interpretable summaries, we use a randomized subset selection technique based on Determinantal
Point Processes (DPPs), which provide a probabilistic model of diversity that has emerged across
many scientific domains. DPPs were first discovered in physics as a model of fermions in thermal
equilibrium, and they have since been used in random matrix theory, graph theory and quantum
mechanics. More recently, thanks to the emergence of efficient algorithms for DPP sampling, they
have also become popular in RandNLA and Machine Learning.

Our analysis reveals that the previously observed worst-case examples are part of a larger
phenomenon, which we call the multiple-descent curve in data summarization. This curve represents



a family of phase transitions, observed through a spike in the cost of interpretability, which occur
when the data exhibit an underlying hierarchical structure. The multiple-descent curve can be
observed not only in artificially constructed pathological examples but also in real-world problems.
However, it can generally be avoided by tuning model parameters.

This phenomenon is very much reminiscent of the so-called double descent curve, which is
exhibited by many machine learning models including deep neural networks. In the context of
double descent, we distinguish two regimes of machine learning: the ”classical” regime, where we
have an abundance of training data relative to the number of model parameters we wish to learn;
and the "modern” regime, which includes deep learning architectures, where there is far more
parameters than training data. While each regime allows for constructing machine learning models
that perform well on unseen data, the phase transition between the two regimes may lead to a spike
in the error rate, resulting in poor performance.

Both the double descent curve in machine learning, and the new multiple-descent curve in data
summarization, shown in our work, are related to fundamental phase transitions observed in the
behavior of high-dimensional random matrices. Obtaining precise characterizations of these phe-
nomena is of crucial importance to understanding modern machine learning as well as algorithmic-
statistical tradeoffs that are central to the foundations of data science.
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