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Generative networks

Easy distribution X ∈ Rn.
Hard distribution Y ∈ Rd .
Generator Network g : X → Y .

What can Y be?

Previous Work

I Universal approximation theorem:
Shallow networks approximate continuous functions.

I “On the ability of neural nets to express distributions”:
Upper bounds for representability & shallow depth separation.

Our Contribution: Wasserstein Error Bounds

I (n < d) Tight error bounds ≈ (Width)Depth →
This is a deep lower bound.

I (n = d) Switching distributions ≈ polylog(1/Error). →

I (n > d) Trivial networks approximate normal by addition.



Increasing Uniform Noise (n < d = kn)

Networks going from Uniform [0, 1]n to [0, 1]kn:

Optimal Error ≈ (Width)
−
(

Depth
k−1

)
.

Upper Bound Proof: Space filling curve.
Lower Bound Proof: Affine piece counting.

≈ ≈
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Normal ↔ Uniform (n = d = 1)

Normal → Uniform: Upper Bound
Approximate the normal CDF with Taylor series.

+ + ≈ →
Size = polylog(1/Error).

Uniform → Normal: Upper Bound
Approximate the inverse CDF using binary search.

Normal CDF Normal CDF

Local variables for executing binary search

Size = polylog(1/Error).

Lower bounds
Size > log(1/Error) with more affine piece counting.



High Dimensional Uniform to Normal (n > d)

Summing independent uniform distributions approximates a normal.

→

→

With a version of Berry-Esseen, we have:

Error ≈ 1/
√

Number of inputs.
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