Support Recovery for Orthogonal Matching Pursuit:

Upper and Lower bounds

Raghav Somani 1, Chirag Gupta 2, Prateek Jain 1 & Praneeth Netrapalli 1

December 6, 2018

¹Microsoft Research Lab - India

²Machine Learning Department, Carnegie Mellon University

- Unconditionally, NP hard.
- Tractable under the assumption of Restricted Strong Convexity (RSC).
- Fundamental quantity capturing hardness :

- Unconditionally, NP hard.
- Tractable under the assumption of Restricted Strong Convexity (RSC).
- Fundamental quantity capturing hardness :

- Unconditionally, NP hard.
- Tractable under the assumption of Restricted Strong Convexity (RSC).
- Fundamental quantity capturing hardness :

- Unconditionally, NP hard.
- Tractable under the assumption of Restricted Strong Convexity (RSC).
- Fundamental quantity capturing hardness:-
 - Standard optimization : Condition number

$$\kappa = \frac{\text{smoothness}}{\text{strong convexity}}$$

Sparse optimization : Restricted Condition number

$$\tilde{\kappa} = \frac{\text{restricted smoothness}}{\text{restricted strong convexity}}$$

We work under the model where

Observations

Measurement matrix

$$\mathbf{y} = \mathbf{A} \ \bar{\mathbf{x}} + \boldsymbol{\eta}$$

s*-sparse vector

Noise

Goals of SLR

We work under the model where

s*-sparse vector

Noise

Goals of SLR

O Support Recovery - Recover the support of s

We work under the model where

We work under the model where

We work under the model where

Goals of SLR

- **1** Bounding Generalization error/Excess Risk $G(\mathbf{x}) \coloneqq \frac{1}{n} \|\mathbf{A}(\mathbf{x} \bar{\mathbf{x}})\|_2^2$.
- Support Recovery Recover the support of $\bar{\mathbf{x}}$

We work under the model where

Goals of SLR

- **3** Bounding Generalization error/Excess Risk $G(\mathbf{x}) \coloneqq \frac{1}{n} \|\mathbf{A}(\mathbf{x} \bar{\mathbf{x}})\|_2^2$.
- **2** Support Recovery Recover the support of $\bar{\mathbf{x}}$.

We work under the model where

Goals of SLR

- **1** Bounding Generalization error/Excess Risk $G(\mathbf{x}) \coloneqq \frac{1}{n} \|\mathbf{A}(\mathbf{x} \bar{\mathbf{x}})\|_2^2$.
- $\ensuremath{\text{2}}$ Support Recovery Recover the support of $\bar{\mathbf{x}}.$

Orthogonal Matching Pursuit

- Incremental Greedy algorithm
- Popular and easy to implement
- Widely studied in literature

Known results and our contribution

Upper bound Lower bound

Known Generalization bound ∝

Our Generalization bound «

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}^2$$

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa} \log \widetilde{\iota}$$

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$

Support Expansion

Known \propto $s^* \tilde{\kappa}^2$

Our's $\propto s^* \widetilde{\kappa} \log \widetilde{\kappa}$

Known results and our contribution

Upper bound Lower bound

Known Generalization bound ∝

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}^2$$

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$

Our Generalization bound \propto

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa} \log \widetilde{\kappa}$$

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$

- Unconditional lower bounds for OMP.
- Support recovery guarantees and its lower bounds

Support Expansion

Known
$$\propto s^* \widetilde{\kappa}^2$$

Our's
$$\propto s^* \widetilde{\kappa} \log \widetilde{\kappa}$$

Known results and our contribution

Upper bound Lower bound

Known Generalization bound ∝

$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa}^2 \qquad \frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$
$$\frac{1}{n}\sigma^2 s^* \widetilde{\kappa} \log \widetilde{\kappa} \qquad \frac{1}{n}\sigma^2 s^* \widetilde{\kappa}$$

• Support recovery guarantees and its lower bounds.

Support Expansion

Known
$$\propto s^* \widetilde{\kappa}^2$$

Our's
$$\propto s^* \widetilde{\kappa} \log \widetilde{\kappa}$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

- If any support is unrecovered, then there is a large additive decrease
- $f(\mathbf{x}) \ge 0 \implies$ support recovery will happen soon

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

- If any support is unrecovered, then there is a large additive decrease.
- $f(\mathbf{x}) \ge 0 \implies$ support recovery will happen soon.
- Recovery with small support

 small generalization error.

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

- If any support is unrecovered, then there is a large additive decrease.
- $f(\mathbf{x}) \ge 0 \implies$ support recovery will happen soon.

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

- If any support is unrecovered, then there is a large additive decrease.
- $f(\mathbf{x}) \ge 0 \implies$ support recovery will happen soon.
- Recovery with small support ⇒ small generalization error.

Thank You!

7/7