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Bayesian optimization 

Goal: x* = argmax
x∈𝔛

f(x)

Challenges:

• f is expensive to evaluate
• f is multi-peak
• no gradient information
• evaluations can be noisy
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Assume a GP prior f ∼ GP(μ, k)

LOOP 
• choose new query point(s) to evaluate 
• compute the posterior GP model
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• re-estimate the prior parameters

Challenges:

• f is expensive to evaluate
• f is multi-peak
• no gradient information
• evaluations can be noisy

e.g. by maximizing marginal data likelihood 
every few iterations
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Bayesian optimization 

Goal: x* = argmax
x∈𝔛
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Assume a GP prior f ∼ GP(μ, k)

Hard to analyze. 
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Bayesian optimization with an unknown GP prior

prior model

data collected on f

Our problem setup: 
use past experience with similar 
functions as the meta training data to 
break the circular dependencies 
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Meta Bayesian optimization with an unknown GP prior

Offline phase Online phase
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Meta Bayesian optimization with an unknown GP prior
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Estimated prior

Online phase

Estimate the GP prior from offline data 
sampled from the same prior
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Offline phase
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Estimated prior

Online phase

Estimate the GP prior from offline data 
sampled from the same prior

Construct unbiased estimators of the 
posterior and use a variant of GP-UCB
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Effect of N, the number of meta training functions
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Important assumptions: 
• meta-training functions come from the same prior 
• enough number of meta-training functions N ≳ T + 20

constant 
observation noise

Theorem (finite input space)

Given                                                            , with high probability,  

simple regret RT ≲ O ( 1
N − T ) + C O ( log T

T ) + σ2 → Cσ

T fobservations on the test function

linear kernel

Bounding the regret of meta BO with an unknown GP prior

≈ 10

Results for continuous 
input space @ poster #22



Empirical results on block picking and placing 
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Poster #22

More results on:
• estimation details for discrete and continuous input spaces
• regret bounds for compact input space in 
• regret bounds for probability of improvement in the meta learning setting
• empirical results on robotics tasks

Regret bounds for meta Bayesian optimization  
with an unknown Gaussian process prior

Rd

https://ziw.mit.edu/meta_bo


