Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

Zi Wang*

Beomjoon Kim*

Dec 5 @ NeurIPS 18

Leslie Pack Kaelbling

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak
- no gradient information •
- evaluations can be noisy

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak •
- no gradient information ullet
- evaluations can be noisy •

Assume a GP prior $f \sim GP(\mu, k)$

LOOP

- choose new query point(s) to evaluate
- compute the posterior GP model

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak •
- no gradient information ullet
- evaluations can be noisy ullet

How to choose the prior?

- compute the posterior GP model
- choose new query point(s) to evaluate

LOOP

Assume a GP prior $f \sim GP(\mu, k)$

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak •
- no gradient information
- evaluations can be noisy ullet

Assume a GP prior $f \sim GP(\mu, k)$

LOOP

- choose new query point(s) to evaluate
- compute the posterior GP model
- re-estimate the prior parameters e.g. by maximizing marginal data likelihood every few iterations

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak •
- no gradient information
- evaluations can be noisy ullet

Which comes first? Data or prior?

Assume a GP prior $f \sim GP(\mu, k)$

LOOP

- choose new query point(s) to evaluate
- compute the posterior GP model
- re-estimate the prior parameters e.g. by maximizing marginal data likelihood every few iterations

Goal:
$$x^* = \operatorname{argmax} f(x)$$

 $x \in \mathfrak{X}$

Challenges:

- f is expensive to evaluate
- f is multi-peak •
- no gradient information
- evaluations can be noisy ullet

Which comes first? Data or prior?

Assume a GP prior $f \sim GP(\mu, k)$

LOOP

- choose new query point(s) to evaluate
- compute the posterior GP model
- re-estimate the prior parameters e.g. by maximizing marginal data likelihood every few iterations

Hard to analyze.

prior model

Estimate the GP prior from offline data sampled from the same prior

Estimate the GP prior from offline data sampled from the same prior

Construct unbiased estimators of the posterior and use a variant of GP-UCB Online phase $\hat{\mu}_0(x) \qquad \qquad \hat{\mu}_0(x) \pm \zeta_1 \sqrt{\hat{k}_0(x)}$ Estimated prior $\hat{\mu}, \hat{k}$ ${\mathcal X}$

Estimate the GP prior from offline data sampled from the same prior

Construct unbiased estimators of the posterior and use a variant of GP-UCB Online phase $\hat{\mu}_1(x) \qquad \qquad \hat{\mu}_1(x) \pm \zeta_2 \sqrt{\hat{k}_1(x)}$ Estimated prior $\hat{\mu}, \hat{k}$ ${\mathcal X}$

Estimate the GP prior from offline data sampled from the same prior

Construct unbiased estimators of the posterior and use a variant of GP-UCB Online phase $\hat{\mu}_2(x) \pm \zeta_3 \sqrt{\hat{k}_2(x)}$ $\hat{\mu}_2(x)$ Estimated prior $\hat{\mu}, \hat{k}$ ${\mathcal X}$

Estimate the GP prior from offline data sampled from the same prior

Construct unbiased estimators of the posterior and use a variant of GP-UCB Online phase $\hat{\mu}_3(x) \qquad \qquad \hat{\mu}_3(x) \pm \zeta_4 \sqrt{\hat{k}_3(x)}$ Estimated prior $\hat{\mu}, \hat{k}$ ${\mathcal X}$

Estimate the GP prior from offline data sampled from the same prior

Construct unbiased estimators of the posterior and use a variant of GP-UCB Online phase $\hat{\mu}_4(x) = \hat{\mu}_4(x) \pm \zeta_5 \sqrt{\hat{k}_4(x)}$ Estimated prior $\hat{\mu}, \hat{k}$ ${\mathcal X}$

Effect of N, the number of meta training functions

Bounding the regret of meta BO with an unknown GP prior

Theorem (finite input space)

Important assumptions:

- meta-training functions come from the same prior
- enough number of meta-training functions $N \gtrsim T + 20$

Given T observations on the test function f, with high probability,

Results for continuous input space @ poster #22

Empirical results on block picking and placing

meta-training data N = 1500

test function

30

Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

More results on:

- estimation details for discrete and continuous input spaces
- regret bounds for compact input space in R^d
- regret bounds for *probability of improvement* in the meta learning setting
- empirical results on robotics tasks

https://ziw.mit.edu/meta bo