Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation

Liwei Wang Lunjia Hu Jiayuan Gu Yue Wu Zhiqiang Hu Kun He John Hopcroft

NeurIPS 2018 Spotlight

Motivation

- It's widely believed that deep nets learn particular features/representations in their intermediate layers, and people design architectures in order to learn these representations better (e.g. CNN).

Motivation

- It's widely believed that deep nets learn particular features/representations in their intermediate layers, and people design architectures in order to learn these representations better (e.g. CNN).
- However, there is a lack of theory on what these representations really are.

Motivation

- It's widely believed that deep nets learn particular features/representations in their intermediate layers, and people design architectures in order to learn these representations better (e.g. CNN).
- However, there is a lack of theory on what these representations really are.
- One fundamental question: are the representations learned by deep nets robust? In other words, are the learned representations commonly shared across multiple deep nets trained on the same task?

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.
- Given a set of test examples, do the two deep nets share similarity in their output of layer i ?

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.
- Given a set of test examples, do the two deep nets share similarity in their output of layer i ?
- When layer i is the input layer, the similarity is high because both deep nets take the same test examples as input.

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.
- Given a set of test examples, do the two deep nets share similarity in their output of layer i ?
- When layer i is the input layer, the similarity is high because both deep nets take the same test examples as input.
- When layer i is the final output layer that predicts the classification labels, the similarity is also high assuming both deep nets have tiny test error.

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.
- Given a set of test examples, do the two deep nets share similarity in their output of layer i ?
- When layer i is the input layer, the similarity is high because both deep nets take the same test examples as input.
- When layer i is the final output layer that predicts the classification labels, the similarity is also high assuming both deep nets have tiny test error.
- How similar are intermediate layers?

Motivation

- In particular, suppose we have two deep nets with the same architecture trained on the same training data but from different initializations.
- Given a set of test examples, do the two deep nets share similarity in their output of layer i ?
- When layer i is the input layer, the similarity is high because both deep nets take the same test examples as input.
- When layer i is the final output layer that predicts the classification labels, the similarity is also high assuming both deep nets have tiny test error.
- How similar are intermediate layers?
- Do some groups of neurons in an intermediate layer learn features/representations that both deep nets share in common? How large are these groups?

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer	Layer	Output of layer
i after ReLU	$i+1$	Layer
	after ReLU	$i+1$

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer	Layer	Output of layer
i after ReLU	$i+1$	Layer
	after ReLU	$i+1$

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer	Layer	Output of layer	Layer
For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$,			
i after ReLU	$i+1$	i after ReLU	$i+1$

 for all i,

$$
\left[\begin{array}{l}
X\left(\mathbf{a}_{i}\right) \\
\\
Y\left(\mathbf{a}_{i}\right)
\end{array}\right]=\boldsymbol{A}\left[\begin{array}{c}
Z\left(\mathbf{a}_{i}\right) \\
W\left(\mathbf{a}_{i}\right)
\end{array}\right]
$$

$$
\left[\begin{array}{c}
Z\left(\mathbf{a}_{i}\right) \\
W\left(\mathbf{a}_{\mathbf{i}}\right)
\end{array}\right]=\boldsymbol{B}\left[\begin{array}{l}
X\left(\mathbf{a}_{i}\right) \\
Y\left(\mathbf{a}_{i}\right)
\end{array}\right]
$$

Two Groups of Neurons Learning the Same Representation: Exact Matches

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer i after ReLU

Layer Output of layer
Layer
$i+1 \quad i$ after ReLU
$i+1$

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer	Layer	Output of layer	Layer
For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$,			
i after ReLU	$i+1$	i after ReLU	$i+1$

 for all i,

$$
\left[\begin{array}{l}
Z\left(\mathbf{a}_{i}\right) \\
W\left(\mathbf{a}_{i}\right)
\end{array}\right]=\left[\begin{array}{l}
X\left(\mathbf{a}_{i}\right) \\
\\
\\
Y\left(\mathbf{a}_{i}\right)
\end{array}\right]
$$

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer i after ReLU

Layer Output of layer
Layer
$i+1$

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer i after ReLU

Layer Output of layer Layer
$i+1$

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer i after ReLU

Layer Output of layer
Layer
$i+1 \quad i$ after ReLU
$i+1$

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer i after ReLU

Layer Output of layer
Layer
$i+1 \quad i$ after ReLU
$i+1$

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,
$\left[\begin{array}{l}X\left(\mathbf{a}_{i}\right) \\ Y\left(\mathbf{a}_{i}\right)\end{array}\right]=\boldsymbol{A}\left[\begin{array}{l}Z\left(\mathbf{a}_{i}\right) \\ W\left(\mathbf{a}_{i}\right)\end{array}\right]$

$$
\left[\begin{array}{l}
Z\left(\mathbf{a}_{i}\right) \\
W\left(\mathbf{a}_{i}\right)
\end{array}\right]=\left[\begin{array}{l}
X\left(\mathbf{a}_{i}\right) \\
\\
\\
Y\left(\mathbf{a}_{i}\right)
\end{array}\right]
$$

Two Groups of Neurons Learning the Same Representation: Exact Matches

Output of layer	Layer	Output of layer	Layer
For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$,			
i after ReLU	$i+1$	i after ReLU	$i+1$

 for all i,

$$
\left[\begin{array}{l}
Z\left(\mathbf{a}_{i}\right) \\
W\left(\mathbf{a}_{i}\right)
\end{array}\right]=\left[\begin{array}{l}
X\left(\mathbf{a}_{i}\right) \\
\\
Y\left(\mathbf{a}_{i}\right)
\end{array}\right]
$$

Two Groups of Neurons Learning the Same Representation: Exact Matches

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

Two Groups of Neurons Learning the Same Representation: Exact Matches

For test examples $\mathbf{a}_{1}, \cdots, \mathbf{a}_{d}$, there exist A and B such that for all i,

$$
=\operatorname{span}(\underbrace{\left[Z\left(\mathbf{a}_{1}\right), \cdots, Z\left(\mathbf{a}_{d}\right)\right]}_{\text {activation vector of } Z}, \underbrace{\left[W\left(\mathbf{a}_{1}\right), \cdots, W\left(\mathbf{a}_{d}\right)\right]}_{\text {activation vector of } W})
$$

We say $(\{X, Y\},\{Z, W\})$ form an exact match!

Exact/Approximate Matches between Two Groups of Neurons

- Suppose $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{d}$ are the test examples. The output of neuron X on these test examples form a vector $\left(X\left(\mathbf{a}_{1}\right), X\left(\mathbf{a}_{2}\right), \cdots, X\left(\mathbf{a}_{d}\right)\right)$ called the activation vector [Raghu et al., 2017].

Exact/Approximate Matches between Two Groups of Neurons

- Suppose $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{d}$ are the test examples. The output of neuron X on these test examples form a vector $\left(X\left(\mathbf{a}_{1}\right), X\left(\mathbf{a}_{2}\right), \cdots, X\left(\mathbf{a}_{d}\right)\right)$ called the activation vector [Raghu et al., 2017].
- If the activation vectors of two groups of neurons span the same linear subspace, we say the two groups of neurons form an exact match.

Exact/Approximate Matches between Two Groups of Neurons

- Suppose $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{d}$ are the test examples. The output of neuron X on these test examples form a vector $\left(X\left(\mathbf{a}_{1}\right), X\left(\mathbf{a}_{2}\right), \cdots, X\left(\mathbf{a}_{d}\right)\right)$ called the activation vector [Raghu et al., 2017].
- If the activation vectors of two groups of neurons span the same linear subspace, we say the two groups of neurons form an exact match.
- If the activation vector of every neuron in each group is ε-close to the linear subspace spanned by the other group, we say the two groups form an ε-approximate match.
- Vector \mathbf{u} is ε-close to linear subspace S if the sine of the angle between \mathbf{u} and S is at most ε, or equivalently, $\min _{\mathbf{v} \in S}\|\mathbf{u}-\mathbf{v}\|_{2} \leq \varepsilon\|\mathbf{u}\|_{2}$.

Maximum Matches and Simple Matches

- Matches are closed under union, so there is a unique maximum match.

Maximum Matches and Simple Matches

- Matches are closed under union, so there is a unique maximum match.
- We define simple matches to be matches that are not the union of smaller matches.

Maximum Matches and Simple Matches

- Matches are closed under union, so there is a unique maximum match.
- We define simple matches to be matches that are not the union of smaller matches.
- Any match is a union of simple matches.

Maximum Matches and Simple Matches

- Matches are closed under union, so there is a unique maximum match.
- We define simple matches to be matches that are not the union of smaller matches.
- Any match is a union of simple matches.
- We designed algorithms for finding the maximum match and the simple matches, and we implemented the algorithms to conduct experiments.

Experimental Findings：Few Matches in Intermediate Layers

Figure：Size of maximum match／number of neurons across layers

Experimental Findings：Few Matches in Intermediate Layers

Figure：Size of maximum match／number of neurons across layers

CIFAR10－ResNet34

Thank you!

Come to the poster for more details!

$$
\text { 05:00 - 07:00 PM @ Room } 210 \text { \& } 230 \text { AB \#26 }
$$

