Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere

Yanjun Li Yoram Bresler

CSL and Department of ECE, UIUC

Neural Information Processing Systems Foundation

IILLINOIS

Coordinated Science Lab Electrical & Computer Engineering COLLEGE OF ENGINEERING

1

Dec 4, 2018

Model:

- Given circular convolution: $y_i = x_i \circledast f$, for i = 1, 2, ..., N
- Solve for x_i and f

Assumptions:

- $f \in \mathbb{R}^n$: invertible signal
- $x_i \in \mathbb{R}^n$: sparse filters

Applications:

- opportunistic underwater acoustics
- reflection seismology
- functional MRI
- super-resolution fluorescence microscopy
- Open problem:
 - Guaranteed algorithm for unconstrained f

Model:

- Given circular convolution: $y_i = x_i \circledast f$, for i = 1, 2, ..., N
- Solve for x_i and f

Assumptions:

- $f \in \mathbb{R}^n$: invertible signal
- $x_i \in \mathbb{R}^n$: sparse filters

Applications:

- opportunistic underwater acoustics
- reflection seismology
- functional MRI
- super-resolution fluorescence microscopy
- Open problem:
 - Guaranteed algorithm for unconstrained f

Model:

- Given circular convolution: $y_i = x_i \circledast f$, for i = 1, 2, ..., N
- Solve for x_i and f

Assumptions:

- $f \in \mathbb{R}^n$: invertible signal
- $x_i \in \mathbb{R}^n$: sparse filters

Applications:

- opportunistic underwater acoustics
- reflection seismology
- functional MRI
- super-resolution fluorescence microscopy

Open problem:

• Guaranteed algorithm for unconstrained f

Model:

- Given circular convolution: $y_i = x_i \circledast f$, for i = 1, 2, ..., N
- Solve for x_i and f

Assumptions:

- $f \in \mathbb{R}^n$: invertible signal
- $x_i \in \mathbb{R}^n$: sparse filters

Applications:

- opportunistic underwater acoustics
- reflection seismology
- functional MRI
- super-resolution fluorescence microscopy

Open problem:

• Guaranteed algorithm for unconstrained f

Formulation

Solving for inverse filter

• Find the inverse h of f

(P0)
$$\min_{h \in \mathbb{R}^n} \frac{1}{N} \sum_{i=1}^N \|C_{y_i}h\|_0$$
, s.t. $h \neq 0$.

Solution: scaled & shifted

Smooth formulation

• min. "sparsity" ℓ_1 norm \approx max. "spiky" ℓ_4 norm

(P1)
$$\min_{h \in \mathbb{R}^n} -\frac{1}{4N} \sum_{i=1}^N \|C_{y_i} Rh\|_4^4$$
, s.t. $\|h\| = 1$.

Preconditioner $R := \left(\frac{1}{\theta nN} \sum_{i=1}^{N} C_{y_i}^{\top} C_{y_i}\right)^{-1/2}$

• Solution: signed & shifted

Formulation

Solving for inverse filter

• Find the inverse h of f

(P0)
$$\min_{h \in \mathbb{R}^n} \frac{1}{N} \sum_{i=1}^N \|C_{y_i}h\|_0$$
, s.t. $h \neq 0$.

Solution: scaled & shifted

Smooth formulation

• min. "sparsity" ℓ_1 norm \approx max. "spiky" ℓ_4 norm

(P1)
$$\min_{h \in \mathbb{R}^n} -\frac{1}{4N} \sum_{i=1}^N \|C_{y_i} Rh\|_4^4$$
, s.t. $\|h\| = 1$.

Preconditioner
$$R := \left(\frac{1}{\theta nN} \sum_{i=1}^{N} C_{y_i}^{\top} C_{y_i}\right)^{-1/2}$$

 $\frac{1}{\theta nN} \sum_{i=1}^{N} \frac{1}{\theta nN} \sum_{i=1}^{$

• Solution: signed & shifted

Main Result

Theorem (Geometric Analysis [L. and Bresler, 2018])

lf

- $\{x_i\}_{i=1}^N \subset \mathbb{R}^n$: Bernoulli-Rademacher
- $N \gtrsim \operatorname{polylog}(n)$

Then w.h.p.,

- local minima ⇐⇒ signed & shifted ground truth
- objective function:
 - o near local minima: strongly convex
 - o near local maxima & saddle points: negative curvature (strict saddle points)

Geometric Structure

First-Order Algorithm

Optimize the sparsity promoting objective over the unit sphere

- Manifold gradient descent: $h^{(t+1)} = P_{S^{n-1}} (h^{(t)} \gamma \widehat{\nabla}_L (h^{(t)}))$
 - o gradient descent along the tangent space
 - retraction (projection onto the sphere)
- Time complexity (per iteration): $O(Nn \log n)$

Theorem

lf

- geometric properties
- random initialization $h^{(0)} \sim \text{Uniform}(S^{n-1})$
- fixed step size

Then manifold gradient descent

- converges to a local minimum (≈ signed & shifted ground truth) a.s.
- achieves accuracy ρ after $T \gtrsim poly(n/\rho)$ steps

Empirical Phase Transition

- Random $f \in \mathbb{R}^n$, Bernoulli-Rademacher $x_i \in \mathbb{R}^n$
- Noise level: 20 dB
- Iteration number T = 100, step size $\gamma = 0.1$

• Empirical success:

•
$$N \gtrsim n\theta$$

 \circ weak dependence on κ

Empirical Convergence

Application: SR Fluorescence Microscopy

Time resolved images

- fluorophores \implies sparse
- $\bullet \ \ \text{random activation} \Longrightarrow \text{random}$

Application: SR Fluorescence Microscopy

true image

nonblind deconvolution

blind deconvolution

true kernel

miscalibrated kernel

estimated kernel

Application: SR Fluorescence Microscopy

blurry image

nonblind deconvolution

blind deconvolution

true kernel

miscalibrated kernel

estimated kernel

Thank you!