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Hypothesis Testing

• Given data from an unknown statistical source (distribution)

• Does the distribution satisfy a postulated hypothesis?
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Modern Challenges

Large domain, small samples

• Distributions over large domains/high dimensions

• Expensive data

• Sample complexity

• Samples contain sensitive information

• Perform hypothesis testing while preserving privacy
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Identity Testing (IT), Goodness of Fit

• [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k.

• q : a known distribution over [k].

• Given X n := X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Tester: A : [k]n → {0, 1}, which satisfies the following:
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• Tester: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n) =

1, if p = q

0, if |p − q|TV > α

Sample complexity: Smallest n where such a tester exists.
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Identity Testing (IT), Goodness of Fit

• [k] := {0, 1, 2, ..., k − 1}, a discrete set of size k.

• q : a known distribution over [k].

• Given X n := X1 . . .Xn independent samples from unknown p.

• Is p = q?

• Tester: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n) =

1, if p = q

0, if |p − q|TV > α

S(IT ) = Θ
(√

k/α2
)
.
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Differential Privacy (DP) [Dwork et al., 2006]

A randomized algorithm A : X n → S is ε-differentially private if

∀S ⊂ S and ∀X n, Y n with dH(X n,Y n) ≤ 1, we have

Pr (A(X n) ∈ S) ≤ eε · Pr (A(Y n) ∈ S).
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Previous Results

Identity Testing:

Non-private : S(IT ) = Θ
(√

k
α2

)
[Paninski, 2008]

ε-DP algorithms: S(IT , ε) = O
(√

k
α2 +

√
k log k
α3/2ε

)
[Cai et al., 2017]
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What is the sample complexity of identity testing?
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Our Results

Theorem

S(IT , ε) = Θ

(√
k

α2
+ max

{
k1/2

αε1/2
,

k1/3

α4/3ε2/3
,

1

αε

})
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(√
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α2 .

New algorithms for achieving upper bounds

New methodology to prove lower bounds for hypothesis testing
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Upper Bound

Privatizing the statistic used by [Diakonikolas et al., 2017], which

is sample optimal in the non-private case.

Independent work of [Aliakbarpour et al., 2017] gives a different

upper bound.
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Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X n, such that

E [dH(X n,Y n)] ≤ D

Then, any ε-differentially private hypothesis testing algorithm must

satisfy

ε = Ω

(
1

D

)
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Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X n, such that

E [dH(X n,Y n)] ≤ D

Then, any ε-differentially private hypothesis testing algorithm must

satisfy

ε = Ω

(
1

D

)

Use LeCam’s two-point method.

Construct two hypotheses and a coupling between them with small

expected Hamming distance.
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The End

Paper available on arxiv:

https://arxiv.org/abs/1707.05128.

See you at the poster session!

Tue Dec 4th 05:00 – 07:00 PM @ Room 210 and 230

AB #151.
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