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The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Differential Entropy Estimation

Differential entropy of a continuous density on Rd :

h(f ) =

∫
Rd

f (x) log
1

f (x)
dx

I machine learning tasks, e.g., classification, clustering, feature
selection

I causal inference

I sociology

I computational biology

I · · ·

Our Task
Given empirical samples X1, · · · ,Xn ∼ f , estimate h(f ).
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The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Ideas of Nearest Neighbor

Notations:

I n: number of samples

I d : dimensionality

I k: number of nearest neighbors

I Ri ,k : `2 distance of i-th sample to its k-th nearest neighbor

I vold(r): volumn of the d-dimensional ball with radius r

Idea

h(f ) = E[− log f (X )] ≈ −1

n

n∑
i=1

log f (Xi )

f (Xi ) · vold(Ri ,k) ≈ k

n

k-NN estimator

I Dimension = d

I k-NN distance: ρi

I Approximate:

I Unbiased estimate: k grows with N sub linearly
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The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Kozachenko–Leonenko Estimator

Definition (Kozachenko–Leonenko Estimator)

ĥKLn,k =
1

n

n∑
i=1

log
(n
k

vold(Ri ,k)
)

+ log(k)− ψ(k)︸ ︷︷ ︸
bias correction term

I Easy to implement: no numerical integration

I Only tuning parameter: k

I Good empirical performance without theoretical guarantee,
especially when the density may be close to zero.
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The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Main Result

Let Hs
d be the class of probability densities supported on [0, 1]d

which are Hölder smooth with parameter s ≥ 0.

Theorem (Main Result)

For fixed k and s ∈ (0, 2],(
sup
f ∈Hs

d

Ef

(
ĥKLn,k − h(f )

)2) 1
2

. n−
s

s+d log n + n−
1
2 .

First theoretical guarantee of Kozachenko–Leonenko estimator
without assuming density bounded away from zero.
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The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Matching Lower Bound

Theorem (Han–Jiao–Weissman–Wu’17)

For any s ≥ 0,(
inf
ĥ

sup
f ∈Hs

d

Ef

(
ĥ − h(f )

)2) 1
2

& n−
s

s+d (log n)−
s+2d
s+d + n−

1
2 .

Take-home Message

I Nearest neighbor estimator is nearly minimax

I Nearest neighbor estimator adapts to the unknown
smoothness s

I Maximal inequality plays a central role in dealing with small
densities.
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