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Stochastic Blockmodel
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Limitations:

I Each node belongs to exactly one community

I All nodes in the same community have the same expected degree
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Extensions of Stochastic Blockmodel

I Mixed membership blockmodels (Airoldi et al. 2008) extend this to allow overlap
I θi is a distribution over K communities

I Degree-corrected blockmodels (Karrer and Newman 2011) extend this to allow
heterogeneous degree distributions

I Each node has a degree parameter γi

I There are many other extensions to model the above two properties
I DCMMSB (Jin et al., 2017)
I OCCAM (Zhang et al. 2014)
I SBMO (Kaufmann et al. 2016)
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Overlapping clustering model
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I This covers many well-known overlapping clustering models:

‖θi‖1 = 1 DCMMSB

‖θi‖2 = 1 OCCAM

θi ∈ {0, 1}K SBMO

I The LDA topic model (Blei et al. 2003) is also a special case
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Main idea

Model Main idea

(Zhang et al. 2014) OCCAM k-median on regularized eigenvectors

(Kaufmann et al. 2016) SBMO Alternating minimization

(Mao et al., 2017) MMSB Finding K corners of a simplex in RK

(Jin et al., 2017) DCMMSB Finding K corners of a simplex in RK−1

(Arora et al., 2013) Topic Models Finding K corners of a simplex in RV

This work All Finding extreme rays of a convex cone

I Let V ∈ Rn×K be the top-K eigenvectors of P

I Rows of V form a cone

Figure: Each point is a row of V
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Main idea

Normalize−−−−−−→ One-class SVM−−−−−−−−−→

I SVM-cone:
I Normalize rows vi of V to unit `2 norm

I Each node lies on the intersection of the cone and the unit sphere
I Run a one-class SVM =⇒ support vectors are the corners
I Estimate community memberships by regression vi on these corners

I This is for the ideal “population” version
I Similar ideas provably work for the “empirical” version
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Per-node Consistency Guarantees

I This one algorithm yields consistency guarantees for
I community memberships of each node

I most algorithms show guarantees for the whole matrix

I for all overlapping clustering models mentioned earlier

I Example

Per-node consistency guarantee for DCMMSB (informal)

If θi ∼ Dirichlet(α), under a broad parameter regime, with high probability,

max
i
‖θ̂i − θi‖ = Õ

(
g√
ρn

)
,

where g depends on model parameters.
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Conclusions

I A simple and scalable algorithm

Eigendecomposition⇒ Row-normalize⇒ One-class SVM⇒ Regression

I infers community memberships for a broad class of overlapping clustering models
I with per-node consistency guarantees

I Good performance on several large scale real-world datasets.
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