Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay

Frederic Koehler

Massachusetts Institute of Technology

NeurIPS 2019
Graphical models

Ising model: For $x \in \{\pm 1\}^n$,

$$Pr(X = x) = \frac{1}{Z} \exp \left(\frac{1}{2} x^T J x + h^T x \right)$$

Natural model of correlated random variables. Some examples: Hopfield networks, Restricted Boltzmann Machine (RBM) = bipartite Ising model.

Popular model in ML, natural and social sciences, etc.
Inference: Given J, h compute properties of the model. E.g. $\mathbb{E}[X_i]$ or $\mathbb{E}[X_i | X_j = x_j]$.

Problem: inference in Ising models (e.g. approximating $\mathbb{E}[X_i]$) is NP-hard! Natural markov chain approaches (e.g. Gibbs sampling) may mix very slowly.

$$\mathbb{E}[X_{WI} | X_{OH} = +1] = ?$$
Variational Inference

Variational objectives (Mean-Field/VI, Bethe):

\[\Phi_{MF}(x) = \frac{1}{2} x^T J x + h^T x + \sum_i H\left(\text{Ber}\left(\frac{1 + x_i}{2}\right)\right) \]

\[\Phi_{Bethe}(P) = \mathbb{E}_P[\frac{1}{2} X^T J X + h^T X] + \sum_{E} H_P(X_E) - \sum_i (\text{deg}(i) - 1) H_P(X_i) \]

Message-passing algorithms (MF/VI, BP):

\[x^{(t+1)} = \tanh^\otimes n(Jx^{(t)} + h) \]

\[\nu_{i \rightarrow j}^{(t+1)} = \tanh \left(h_i + \sum_{k \in \partial i \setminus j} \tanh^{-1}(\tanh(J_{ik}) \nu_{k \rightarrow i}^{(t)}) \right) \]

Non-convex objective — when do these algorithms find global optima?
We suppose, following Dembo-Montanari ’10, that the model is ferromagnetic:

\[J_{ij} \geq 0, \ h_i \geq 0 \quad \text{for all } i, j \]

- I.e. neighbors want to align.
- This assumption is **necessary**: if we don’t have it, computing the optimal mean-field approximation, even approximately, is NP hard.
- Objective typically has sub-optimal critical points. (cf. correlation decay)
Our Theorems

Fix a ferromagnetic Ising model \((J, h)\) with \(m\) edges and \(n\) nodes.

Theorem (Mean-Field Convergence)

Let \(x^*\) be a global maximizer of \(\Phi_{MF}\). Initializing with \(x^{(0)} = \vec{1}\) and defining \(x^{(1)}, x^{(2)}, \ldots\) by iterating the mean-field equations, for every \(t \geq 1\):

\[
0 \leq \Phi_{MF}(x^*) - \Phi_{MF}(x^{(t)}) \leq \min \left\{ \frac{\|J\|_1 + \|h\|_1}{t}, 2 \left(\frac{\|J\|_1 + \|h\|_1}{t} \right)^{4/3} \right\}
\]

Theorem (BP Convergence)

Let \(P^*\) be a global maximizer of \(\Phi_{Bethe}\). Initializing \(\nu_{i \rightarrow j}^{(0)} = 1\) for all \(i \sim j\) and defining \(\nu^{(1)}, \nu^{(2)}, \ldots\) by BP iteration,

\[
0 \leq \Phi_{Bethe}(P^*) - \Phi_{Bethe}^{\star}(\nu^{(t)}) \leq \sqrt{\frac{8mn(1 + \|J\|_\infty)}{t}}.
\]
For More

The poster: Poster 174, Wednesday 10:45-12:45
The paper: https://arxiv.org/abs/1905.09992