Smoothing Structured Decomposable Circuits

Andy Shih1 Guy Van den Broeck2 Paul Beame3 Antoine Amarilli4

1Stanford University
2University of California, Los Angeles
3University of Washington
4LTCI, Télécom Paris, IP Paris

NeurIPS 2019
Probabilistic Circuits

Tractable computation graph, encoding a distribution.

SOTA for:

- Inference algorithms for PGMs / probabilistic programs
- Discrete density estimation

Exact likelihoods and partition function!

Gaining popularity:

Tractable Probabilistic Models: (UAI19 / AAAI20 tutorial)
Tractability

Different combination of properties leads to different families of circuits

<table>
<thead>
<tr>
<th></th>
<th>SPN</th>
<th>AC</th>
<th>PSDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposability</td>
<td>✓</td>
<td>✓</td>
<td>✓(S)</td>
</tr>
<tr>
<td>Determinism</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Smoothness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pr(evid)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Marginal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPE</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Marginal MAP</td>
<td>×</td>
<td>×</td>
<td>✓*</td>
</tr>
<tr>
<td>Expectation</td>
<td>×</td>
<td>×</td>
<td>✓*</td>
</tr>
</tbody>
</table>

...with different tractability properties.
Smoothness

Definition
A circuit is **smooth** if for every pair of children c_1 and c_2 of a \oplus-gate, $\text{vars}_{c_1} = \text{vars}_{c_2}$.

Figure: Two equivalent circuits computing $(x_0 \otimes x_1) \oplus x_2$. The left one is not smooth and the right one is smooth.
Smoothing a Circuit: Prior Work

- Go to each gate $O(m)$ and fill in each variable $O(n)$
- Quadratic Complexity $O(nm)$
- Problematic when $n \geq 1,000$ and $m \geq 1,000,000$

Our near-linear smoothing algorithm: $O(m \cdot \alpha(m, n))$
Smoothing a Circuit: Our Work

Key Insight: missing variables for each gate form two intervals.

![Diagram showing two intervals labeled A and B on a line labeled π]

Figure: $A \setminus B$ forms two intervals

We need to fill in $2m$ intervals.
Semigroup Range Sum

Theorem

Given \(n \) variables defined over a semigroup and \(m \) intervals, the sum of all intervals can be computed using \(O(m \cdot \alpha(m, n)) \) additions [Chazelle and Rosenberg 1989].

\(\alpha(m, n) \) is the inverse Ackermann function, which grows very slowly.

The original theorem only bounds the number of additions. We bound the number of computations.
Takeaways

▶ Probabilistic circuits can encode complex distributions.

▶ They can compute exact likelihoods, marginals, and more
 ▶ But only if they are smooth.

▶ Best smoothing algorithm was quadratic.

▶ We propose a near linear time smoothing algorithm.
Thanks!

Poster: East Exhibition Hall B+C #182, 10:45AM

Code: https://github.com/AndyShih12/SSDC

Contact: andyshih@cs.stanford.edu