Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Convex Optimization

Gautam Goel

Based on joint work with Yiheng Lin, Haoyuan Sun, and Adam Wierman
This talk: how do we design online learning algorithms that adapt to dynamic environments while accounting for switching costs?
This talk: how do we design online learning algorithms that adapt to dynamic environments while accounting for switching costs?
Online Convex Optimization (OCO) with **one-step lookahead** and **switching costs**

An online learner plays a series of rounds against an adaptive adversary. In the \(t \)-th round:

1. The adversary chooses an \(m \)-strongly-convex cost function \(f_t : \mathbb{R}^d \rightarrow \mathbb{R} \geq 0 \).
2. After observing \(f_t \), the learner picks a point \(x_t \in \mathbb{R}^d \).
3. The online learner pays the hitting cost \(f_t(x_t) \) as well as a switching cost \(\frac{1}{2} \| x_t - x_{t-1} \|^2 \) which penalizes the learner for changing its decisions between rounds.
Online Convex Optimization (OCO) with one-step lookahead and switching costs

An online learner plays a series of rounds against an adaptive adversary. In the t-th round:

1. The adversary chooses an m-strongly-convex cost function $f_t : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$.
Online Convex Optimization (OCO) with **one-step lookahead** and **switching costs**

An online learner plays a series of rounds against an adaptive adversary. In the t-th round:

1. The adversary chooses an m-strongly-convex cost function $f_t : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$.

2. **After** observing f_t, the learner picks a point $x_t \in \mathbb{R}^d$.

Online Convex Optimization (OCO) with \textbf{one-step lookahead} and \textbf{switching costs}

An online learner plays a series of rounds against an adaptive adversary. In the t-th round:

1. The adversary chooses an m-strongly-convex cost function $f_t : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$.

2. After observing f_t, the learner picks a point $x_t \in \mathbb{R}^d$.

3. The online learner pays the \textbf{hitting cost} $f_t(x_t)$ as well as a \textbf{switching cost} $\frac{1}{2} \| x_t - x_{t-1} \|^2_2$ which penalizes the learner for changing its decisions between rounds.
Competitive Ratio = \sup_{f_1, \ldots, f_T} \frac{\sum_{t=1}^{T} f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2}{\min_{x_1, \ldots, x_T} \sum_{t=1}^{T} f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2}.

\text{Dynamic optimal solution}
Online Gradient Descent (OGD)

\[x_{t-1} \]

\[x_t \]

\[v_t = \arg\min_{x_t} f_t(x) \]
Online Balanced Descent (OBD)

Key idea 1: Always project onto level sets (same hitting cost but less switching cost!).
Online Balanced Descent (OBD)

Key idea 1: Always project onto level sets (same hitting cost but less switching cost!).

Key idea 2: Pick step size so that switching costs and hitting costs are roughly equal.
Theorem (Goel, Lin, Sun, Wierman ’19)

Suppose the hitting cost functions are m-strongly convex with respect to the ℓ_2 norm and the switching cost is given by $c(x_t, x_{t-1}) = \frac{1}{2} \|x_t - x_{t-1}\|_2^2$. Any online algorithm must have a competitive ratio at least $\frac{1}{2} \left(1 + \sqrt{1 + \frac{4}{m}}\right)$. Furthermore, this lower bound is not achieved by OBD.
Theorem (Goel, Lin, Sun, Wierman ’19)

Suppose the hitting cost functions are m-strongly convex with respect to the ℓ_2 norm and the switching cost is given by $c(x_t, x_{t-1}) = \frac{1}{2}||x_t - x_{t-1}||^2_2$. Any online algorithm must have a competitive ratio at least $\frac{1}{2} \left(1 + \sqrt{1 + \frac{4}{m}}\right)$. Furthermore, this lower bound is not achieved by OBD. However, a modified version of OBD, called Regularized-OBD (R-OBD) exactly achieves the optimal $\frac{1}{2} \left(1 + \sqrt{1 + \frac{4}{m}}\right)$ competitive ratio.
Thanks for listening! See poster #50 at 5pm today.

Connections to statistics and control: An Online algorithm for Smoothed Regression and LQR Control [Goel and Wierman, AISTATS’19]

Non-convex cost functions: Online Optimization with Predictions and Non-convex Losses [Lin, Goel, and Wierman arXiv 1911.03827]