N-gram Graph: Representation for Graphs Shengchao Liu, Mehmet Furkan Demirel, Yingyu Liang University of Wisconsin-Madison, Madison Presenter: Hanjun Dai

Machine Learning Progress

Significant progress in Machine Learning

Computer vision

Machine translation

Game Playing

Medical Imaging

ML for Graph-structured Data like Molecules?

ML for Graph-structured Data like Molecules?

Our Method: N-gram Graphs

- Unsupervised, so can be used by various learning methods
- Simple, relatively fast to compute
- Strong empirical performance
 - Outperforms traditional fingerprint/kernel and recent popular GNNs on molecule datasets
 - Preliminary results on other types of data are also strong
- Strong theoretical power for representation/prediction

N-gram Graphs: Bag of Walks

- Key idea: view a graph as **Bag of Walks**
 - Walks of length *n* are called *n*-grams

N-gram Graphs: Bag of Walks

- Key idea: view a graph as **Bag of Walks**
 - Walks of length *n* are called *n*-grams

N-gram Graph (suppose the embeddings for vertices are given):

- 1. Embed each n-gram: entrywise product of its vertex embeddings
- 2. Sum up the embeddings of all *n*-grams: denote the sum as $f_{(n)}$
- 3. Repeat for n = 1, 2, ..., T, and concatenate $f_{(1)}, ..., f_{(T)}$

N-gram Graphs: Bag of Walks

- Key idea: view a graph as **Bag of Walks**
 - Walks of length *n* are called *n*-grams

Experimental Results

- 60 tasks on 10 datasets (predict molecular properties)
- Compared to classic fingerprint/kernel and recent GNNs

Experimental Results

- 60 tasks on 10 datasets (predict molecular properties)
- Compared to classic fingerprint/kernel and recent GNNs

Dataset	# Task	Eval Metric	WL	Morgan	Morgan	GCNN	Weave	GIN	N-Gram	N-Gram
			SVM	RF	XGB				RF	XGB
Delaney	1	RMSE					1, 1	_	0, 1	0, 1
Malaria	1	RMSE		1, 1				_	0, 1	0, 1
CEP	1	RMSE		1, 1				_	0, 1	0, 1
QM7	1	MAE					0, 1	-	0, 1	1, 1
QM8	12	MAE		1,4	0, 1	7,12	2,6	-	0, 2	2, 11
QM9	12	MAE	-		0, 1	4, 7	1,8	-	0,8	7, 12
Tox21	12	ROC-AUC	0, 2	0,7		0, 2	0, 1		3, 12	9, 12
clintox	2	ROC-AUC	0, 1			1, 2	0, 1			1, 2
MUV	17	PR-AUC	4, 12	5, 11	5, 11			0, 7	2,4	1,6
HIV	1	ROC-AUC		1.1					0.1	0.1
Overall	60		4, 15	9, 25	5, 13	12, 23	4, 18	0, 7	5, 31	21, 48

- N-gram+XGBoost: top-1 for 21 tasks, and top-3 for 48 tasks
- Overall better than the other methods

Theoretical Analysis

- N-gram graph ~= compressive sensing of the count statistics (i.e., histogram of different types of *n*-grams)
- Thus has strong representation and prediction power

Come to **Poster # 70** for details!

Code published: https://github.com/chao1224/n_gram_graph