On Exact Computation with an Infinitely Wide Neural Net

Sanjeev Arora1,2 Simon S. Du2 Wei Hu1
Zhiyuan Li1 Ruslan Salakhutdinov3 Ruosong Wang3

1Princeton University 2Institute for Advanced Study 3Carnegie Mellon University
Introduction

• Recent papers [Li and Liang, Du et al., Allen-Zhu et al., Zou et al.] suggested that NNs with sufficiently large width can achieve 0 training error via gradient descent.

• [Jacot et al.] showed that as one increases the width to infinity, a certain limiting behavior, called neural tangent kernel (NTK), can emerge.
Questions we studied

• 1. Can we formally show that the prediction of NNs is equivalent to that of NTKs when width is sufficiently large?

• 2. How does NTK perform?
Theoretical Contribution

Theorem (Arora, Du, Hu, Li, Salakhutdinov, Wang, NeurIPS 2019): When width is sufficiently large (polynomial in number of data, depth and the inverse of target accuracy ε), the predictor learned by applying gradient descent on a neural network is ε-close to the kernel regression predictor of the corresponding neural tangent kernel.
Experimental Contribution

Dynamic programming-based algorithms for calculating NTKs for CNNs (CNTKs) + efficient GPU implementations.

<table>
<thead>
<tr>
<th>Depth</th>
<th>CNN-V</th>
<th>CNTK-V</th>
<th>CNN-GAP</th>
<th>CNTK-GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>59.97%</td>
<td>64.47%</td>
<td>63.81%</td>
<td>70.47%</td>
</tr>
<tr>
<td>4</td>
<td>60.20%</td>
<td>65.52%</td>
<td>80.93%</td>
<td>75.93%</td>
</tr>
<tr>
<td>6</td>
<td>64.11%</td>
<td>66.03%</td>
<td>83.75%</td>
<td>76.73%</td>
</tr>
<tr>
<td>11</td>
<td>69.48%</td>
<td>65.90%</td>
<td>82.92%</td>
<td>77.43%</td>
</tr>
<tr>
<td>21</td>
<td>75.57%</td>
<td>64.09%</td>
<td>83.30%</td>
<td>77.08%</td>
</tr>
</tbody>
</table>
Future Directions

• Understand the design of neural network architectures and common techniques in deep learning, e.g., batch normalization and residual layers, from the lens of neural tangent kernel.

• Combine NTK with other techniques in kernel methods to further improve the performance.
Thanks!

- Full paper: https://arxiv.org/abs/1904.11955
- Code: https://github.com/ruosongwang/CNTK