Implicit Generation and Generalization with Energy Based Models

Yilun Du and Igor Mordatch
Energy-Based Model

• Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \quad Z(\theta) = \int \exp(-E_\theta(x)) \, dx \]

see [LeCun et al, 2006] for review
Energy-Based Model

• Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

• Train to maximize data likelihood

\[\mathcal{L}_{\text{ML}}(\theta) = \mathbb{E}_{x \sim p_D} [- \log p_\theta(x)] \]
Energy-Based Model

• Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

• Train to maximize data likelihood

\[\mathcal{L}_{ML}(\theta) = \mathbb{E}_{x \sim p_D} [-\log p_\theta(x)] \]

• gradient:

\[\mathbb{E}_{x^+ \sim p_D} [\nabla_\theta E_\theta(x^+)] - \mathbb{E}_{x^- \sim p_\theta} [\nabla_\theta E_\theta(x^-)] \]

See [Turner, 2006] for derivation
Energy-Based Model

• Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

• Train to maximize data likelihood

• gradient:

\[E_{x^+ \sim p_D} [\nabla_\theta E_\theta(x^+)] - E_{x^- \sim p_\theta} [\nabla_\theta E_\theta(x^-)] \]

• Generate model samples implicitly via stochastic optimization

\[\tilde{x}^k = \tilde{x}^{k-1} - \frac{\lambda}{2} \nabla_x E_\theta(\tilde{x}^{k-1}) + \omega^k, \ \omega^k \sim \mathcal{N}(0, \lambda) \]

Langevin Dynamics

[Welling and Teh, 2011]
Why Energy-Based Generative Models?

1. Implicit Generation
 - Flexibility
 - One Object to Learn
 - Compositionality
 - Generic Initialization and Computation Time

2. Intriguing Properties
 - Robustness
 - Online Learning
Why Do EBMs Work Now?

More compute and modern deep learning practices

Faster Sampling

• Continuous gradient based sampling using Langevin Dynamics
• Replay buffer of past samples (similar to persistent CD)

Stability improvements

• Constrain Lipschitz constant of energy function (spectral norm)
• Smoother activations (swish)
• And others ...
Comparison to Other Generative Models

- Training Cost
 - SNGAN
 - Glow
 - PixelCNN++
 - EBM

- Sampling Speed
 - SNGAN
 - Glow
 - PixelCNN++
 - EBM
<table>
<thead>
<tr>
<th>Model</th>
<th>Inception</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10 Unconditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PixelCNN (Van Oord et al., 2016)</td>
<td>4.60</td>
<td>65.93</td>
</tr>
<tr>
<td>PixelIQN (Ostrovski et al., 2018)</td>
<td>5.29</td>
<td>49.46</td>
</tr>
<tr>
<td>EBM (single)</td>
<td>6.02</td>
<td>40.58</td>
</tr>
<tr>
<td>DCGAN (Radford et al., 2016)</td>
<td>6.40</td>
<td>37.11</td>
</tr>
<tr>
<td>WGAN + GP (Gulrajani et al., 2017)</td>
<td>6.50</td>
<td>36.4</td>
</tr>
<tr>
<td>EBM (10 historical ensemble)</td>
<td>6.78</td>
<td>38.2</td>
</tr>
<tr>
<td>SNGAN (Miyato et al., 2018)</td>
<td>8.22</td>
<td>21.7</td>
</tr>
<tr>
<td>CIFAR-10 Conditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved GAN</td>
<td>8.09</td>
<td>-</td>
</tr>
<tr>
<td>EBM (single)</td>
<td>8.30</td>
<td>37.9</td>
</tr>
<tr>
<td>Spectral Normalization GAN</td>
<td>8.59</td>
<td>25.5</td>
</tr>
<tr>
<td>ImageNet 32x32 Conditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PixelCNN</td>
<td>8.33</td>
<td>33.27</td>
</tr>
<tr>
<td>PixelIQN</td>
<td>10.18</td>
<td>22.99</td>
</tr>
<tr>
<td>EBM (single)</td>
<td>18.22</td>
<td>14.31</td>
</tr>
<tr>
<td>ImageNet 128x128 Conditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACGAN (Odena et al., 2017)</td>
<td>28.5</td>
<td>-</td>
</tr>
<tr>
<td>EBM* (single)</td>
<td>28.6</td>
<td>43.7</td>
</tr>
<tr>
<td>SNGAN</td>
<td>36.8</td>
<td>27.62</td>
</tr>
</tbody>
</table>

ImageNet 128x128
Cross Class Mapping
Cross Class Mapping
Surprising Benefits of Energy-Based Models

- Robustness
- Continual Learning
- Compositionality
- Trajectory Modeling
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Generalization

• Following [Hendrycks and Gimpel, 2016]
Robust Classification

(a) L_∞ robustness

(b) L_2 Robustness
Robust Classification

(recent follow-up submission at ICLR 2020 improves baseline EBM performance)
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
Continual Learning: Split MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Incremental task learning</th>
<th>Incremental domain learning</th>
<th>Incremental class learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td></td>
<td>93.46 ± 2.01</td>
<td>55.16 ± 1.38</td>
<td>19.71 ± 0.08</td>
</tr>
<tr>
<td>SGD</td>
<td></td>
<td>97.98 ± 0.09</td>
<td>63.20 ± 0.35</td>
<td>19.46 ± 0.04</td>
</tr>
<tr>
<td>Adagrad</td>
<td></td>
<td>98.06 ± 0.53</td>
<td>58.08 ± 1.06</td>
<td>19.82 ± 0.09</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>98.18 ± 0.96</td>
<td>66.00 ± 3.73</td>
<td>22.52 ± 1.08</td>
</tr>
<tr>
<td>Naive rehearsal</td>
<td>✓</td>
<td>99.40 ± 0.08</td>
<td>95.16 ± 0.49</td>
<td>90.78 ± 0.85</td>
</tr>
<tr>
<td>Naive rehearsal-C</td>
<td>✓</td>
<td>99.57 ± 0.07</td>
<td>97.11 ± 0.34</td>
<td>95.59 ± 0.49</td>
</tr>
<tr>
<td>Continual learning methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWC</td>
<td></td>
<td>97.70 ± 0.81</td>
<td>58.85 ± 2.59</td>
<td>19.80 ± 0.05</td>
</tr>
<tr>
<td>Online EWC</td>
<td></td>
<td>98.04 ± 1.10</td>
<td>57.33 ± 1.44</td>
<td>19.77 ± 0.04</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td>98.56 ± 0.49</td>
<td>64.76 ± 3.09</td>
<td>19.67 ± 0.09</td>
</tr>
<tr>
<td>MAS</td>
<td></td>
<td>99.22 ± 0.21</td>
<td>68.57 ± 6.85</td>
<td>19.52 ± 0.29</td>
</tr>
<tr>
<td>LwF</td>
<td></td>
<td>99.60 ± 0.03</td>
<td>71.02 ± 1.26</td>
<td>24.17 ± 0.33</td>
</tr>
<tr>
<td>GEM</td>
<td>✓</td>
<td>98.42 ± 0.10</td>
<td>96.16 ± 0.35</td>
<td>92.20 ± 0.12</td>
</tr>
<tr>
<td>DGR</td>
<td>✓</td>
<td>99.47 ± 0.03</td>
<td>95.74 ± 0.23</td>
<td>91.24 ± 0.33</td>
</tr>
<tr>
<td>Rtf</td>
<td>✓</td>
<td>99.66 ± 0.03</td>
<td>97.31 ± 0.11</td>
<td>92.56 ± 0.21</td>
</tr>
<tr>
<td>Offline (upper bound)</td>
<td></td>
<td>99.52 ± 0.16</td>
<td>98.59 ± 0.15</td>
<td>97.53 ± 0.30</td>
</tr>
</tbody>
</table>

Evaluation by [Hsu et al, 2019]
Continual Learning: Split MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Incremental task learning</th>
<th>Incremental domain learning</th>
<th>Incremental class learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td></td>
<td>93.46 ± 2.01</td>
<td>55.16 ± 1.38</td>
<td>19.71 ± 0.08</td>
</tr>
<tr>
<td>SGD</td>
<td></td>
<td>97.98 ± 0.09</td>
<td>63.20 ± 0.35</td>
<td>19.46 ± 0.04</td>
</tr>
<tr>
<td>Adagrad L2</td>
<td></td>
<td>98.06 ± 0.53</td>
<td>58.08 ± 1.06</td>
<td>19.82 ± 0.09</td>
</tr>
<tr>
<td>Naive rehearsal</td>
<td>✓</td>
<td>99.40 ± 0.08</td>
<td>95.16 ± 0.49</td>
<td>90.78 ± 0.85</td>
</tr>
<tr>
<td>Naive rehearsal-C</td>
<td>✓</td>
<td>99.57 ± 0.07</td>
<td>97.11 ± 0.34</td>
<td>95.59 ± 0.49</td>
</tr>
<tr>
<td>Continual learning methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWC</td>
<td></td>
<td>97.70 ± 0.81</td>
<td>58.85 ± 2.59</td>
<td>19.80 ± 0.05</td>
</tr>
<tr>
<td>Online EWC</td>
<td></td>
<td>98.04 ± 1.10</td>
<td>57.33 ± 1.44</td>
<td>19.77 ± 0.04</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td>98.56 ± 0.49</td>
<td>64.76 ± 3.09</td>
<td>19.67 ± 0.09</td>
</tr>
<tr>
<td>MAS</td>
<td></td>
<td>99.22 ± 0.21</td>
<td>68.57 ± 6.85</td>
<td>19.52 ± 0.29</td>
</tr>
<tr>
<td>LwF</td>
<td></td>
<td>99.60 ± 0.03</td>
<td>71.02 ± 1.26</td>
<td>24.17 ± 0.33</td>
</tr>
<tr>
<td>GEM</td>
<td>✓</td>
<td>98.42 ± 0.10</td>
<td>96.16 ± 0.35</td>
<td>92.20 ± 0.12</td>
</tr>
<tr>
<td>DGR</td>
<td>✓</td>
<td>99.47 ± 0.03</td>
<td>95.74 ± 0.23</td>
<td>91.24 ± 0.33</td>
</tr>
<tr>
<td>RtF</td>
<td>✓</td>
<td>99.66 ± 0.03</td>
<td>97.31 ± 0.11</td>
<td>92.56 ± 0.21</td>
</tr>
<tr>
<td>Offline (upper bound)</td>
<td></td>
<td>99.52 ± 0.16</td>
<td>98.59 ± 0.15</td>
<td>97.53 ± 0.30</td>
</tr>
</tbody>
</table>

Evaluation by [Hsu et al, 2019]
Continual Learning: Split MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Incremental task learning</th>
<th>Incremental domain learning</th>
<th>Incremental class learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td></td>
<td>93.46 ± 2.01</td>
<td>55.16 ± 1.38</td>
<td>19.71 ± 0.08</td>
</tr>
<tr>
<td>SGD</td>
<td></td>
<td>97.98 ± 0.09</td>
<td>63.20 ± 0.35</td>
<td>19.46 ± 0.04</td>
</tr>
<tr>
<td>Adagrad</td>
<td></td>
<td>98.06 ± 0.53</td>
<td>58.08 ± 1.06</td>
<td>19.82 ± 0.09</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>98.18 ± 0.96</td>
<td>66.00 ± 3.73</td>
<td>22.52 ± 1.08</td>
</tr>
<tr>
<td>Naive rehearsal</td>
<td>✓</td>
<td>99.40 ± 0.08</td>
<td>95.16 ± 0.49</td>
<td>90.78 ± 0.85</td>
</tr>
<tr>
<td>Naive rehearsal-C</td>
<td>✓</td>
<td>99.57 ± 0.07</td>
<td>97.11 ± 0.34</td>
<td>95.59 ± 0.49</td>
</tr>
<tr>
<td>Continual learning methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWC</td>
<td></td>
<td>97.70 ± 0.81</td>
<td>58.85 ± 2.59</td>
<td>19.80 ± 0.05</td>
</tr>
<tr>
<td>Online EWC</td>
<td></td>
<td>98.04 ± 1.10</td>
<td>57.33 ± 1.44</td>
<td>19.77 ± 0.04</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td>98.56 ± 0.49</td>
<td>64.76 ± 3.09</td>
<td>19.67 ± 0.09</td>
</tr>
<tr>
<td>MAS</td>
<td></td>
<td>99.22 ± 0.21</td>
<td>68.57 ± 6.85</td>
<td>19.52 ± 0.29</td>
</tr>
<tr>
<td>LwF</td>
<td></td>
<td>99.60 ± 0.03</td>
<td>71.02 ± 1.26</td>
<td>24.17 ± 0.33</td>
</tr>
<tr>
<td>GEM</td>
<td>✓</td>
<td>98.42 ± 0.10</td>
<td>96.16 ± 0.35</td>
<td>92.20 ± 0.12</td>
</tr>
<tr>
<td>DGR</td>
<td>✓</td>
<td>99.47 ± 0.03</td>
<td>95.74 ± 0.23</td>
<td>91.24 ± 0.33</td>
</tr>
<tr>
<td>RIF</td>
<td>✓</td>
<td>99.66 ± 0.03</td>
<td>97.31 ± 0.11</td>
<td>92.56 ± 0.21</td>
</tr>
<tr>
<td>Offline (upper bound)</td>
<td></td>
<td>99.52 ± 0.16</td>
<td>98.59 ± 0.15</td>
<td>97.53 ± 0.30</td>
</tr>
</tbody>
</table>

Evaluation by [Hsu at al, 2019]

EBM: 64.99 ± 4.27 (10 seeds)
Continual Learning: Split MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Incremental task learning</th>
<th>Incremental domain learning</th>
<th>Incremental class learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td></td>
<td>93.46 ± 2.01</td>
<td>55.16 ± 1.38</td>
<td>19.71 ± 0.08</td>
</tr>
<tr>
<td>SGD</td>
<td></td>
<td>97.98 ± 0.09</td>
<td>63.20 ± 0.35</td>
<td>19.46 ± 0.04</td>
</tr>
<tr>
<td>Adagrad</td>
<td></td>
<td>98.06 ± 0.53</td>
<td>58.08 ± 1.06</td>
<td>19.82 ± 0.09</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>98.18 ± 0.96</td>
<td>66.00 ± 3.73</td>
<td>22.52 ± 1.08</td>
</tr>
<tr>
<td>Naive rehearsal</td>
<td>✓</td>
<td>99.40 ± 0.08</td>
<td>95.16 ± 0.49</td>
<td>90.78 ± 0.85</td>
</tr>
<tr>
<td>Naive rehearsal-C</td>
<td>✓</td>
<td>99.57 ± 0.07</td>
<td>97.11 ± 0.34</td>
<td>95.59 ± 0.49</td>
</tr>
<tr>
<td>Continual learning methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWC</td>
<td></td>
<td>97.70 ± 0.81</td>
<td>58.85 ± 2.59</td>
<td>19.80 ± 0.05</td>
</tr>
<tr>
<td>Online EWC</td>
<td></td>
<td>98.04 ± 1.10</td>
<td>57.33 ± 1.44</td>
<td>19.77 ± 0.04</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td>98.56 ± 0.49</td>
<td>64.76 ± 3.09</td>
<td>19.67 ± 0.09</td>
</tr>
<tr>
<td>MAS</td>
<td></td>
<td>99.22 ± 0.21</td>
<td>68.57 ± 6.85</td>
<td>19.52 ± 0.29</td>
</tr>
<tr>
<td>LwF</td>
<td></td>
<td>99.60 ± 0.03</td>
<td>71.02 ± 1.26</td>
<td>24.17 ± 0.33</td>
</tr>
<tr>
<td>GEM</td>
<td>✓</td>
<td>98.42 ± 0.10</td>
<td>96.16 ± 0.35</td>
<td>92.20 ± 0.12</td>
</tr>
<tr>
<td>DGR</td>
<td>✓</td>
<td>99.47 ± 0.03</td>
<td>95.74 ± 0.23</td>
<td>91.24 ± 0.33</td>
</tr>
<tr>
<td>RtF</td>
<td>✓</td>
<td>99.66 ± 0.03</td>
<td>97.31 ± 0.11</td>
<td>92.56 ± 0.21</td>
</tr>
<tr>
<td>Offline (upper bound)</td>
<td></td>
<td>99.52 ± 0.16</td>
<td>98.59 ± 0.15</td>
<td>97.53 ± 0.30</td>
</tr>
</tbody>
</table>

Evaluation by [Hsu at al, 2019]

EBM: 64.99 ± 4.27

Would any generative model work instead? Doesn’t look like it:
VAE: 40.04 ± 1.31
Surprising Benefits of Energy-Based Models

- Robustness
- Continual Learning
- Compositionality
- Trajectory Modeling
Compositionality via Sum of EBMs
[Hinton, 1999]

Specify a concept by successively adding constraints
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
EBMs for Trajectory Modeling and Control

[Du, Lin, Mordatch, 2019]

- Train energy to model pairwise state transitions s_t, s_{t+1}
- Trajectory probability:

$$p_\theta(\tau) = p_\theta(s_1, s_2, \ldots, s_T) = \prod_{t=1}^{T-1} p_\theta(s_t, s_{t+1})$$

$$\propto \exp(-\sum_{t=1}^{T} E(s_t, s_{t+1}))$$
EBMs for Trajectory Modeling and Control

[Du, Lin, Mordatch, 2019]

• Train energy to model pairwise state transitions s_t, s_{t+1}
• Generate trajectories that achieve specific tasks:

$$p_\theta(s_2, \ldots, s_T|s_1, R) \propto \exp(- \sum_{t=1}^{T-1} E(s_t, s_{t+1}) - \sum_{t=1}^{T} R(s_t))$$

EBM

Task

(similar to direct trajectory optimization)
EBMs for Control

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>Particle</th>
<th>Maze</th>
<th>Reacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrained</td>
<td>EBM</td>
<td>-5.14</td>
<td>-72.07</td>
<td>-19.38</td>
</tr>
<tr>
<td></td>
<td>Action FF</td>
<td>-6.11</td>
<td>-65.06</td>
<td>-25.54</td>
</tr>
<tr>
<td>Online</td>
<td>EBM</td>
<td>-20.38</td>
<td>-162.97</td>
<td>-29.87</td>
</tr>
<tr>
<td></td>
<td>Action FF</td>
<td>-850.67</td>
<td>-949.99</td>
<td>-42.37</td>
</tr>
</tbody>
</table>
Source Code

- Images
 - https://github.com/openai/ebm_code_release
- Trajectories
 - https://github.com/yilundu/model_based_planning_ebm
- Compositionality
 - https://drive.google.com/file/d/138w7Oj8rQI_e40_RfZJq2WKWb41NgKn3
- Interactive Notebook
 - https://drive.google.com/file/d/1fCFRw_YtqQPSNoqznIh2b1L2baFgLz4W/view